As always, sit with a partner and work through these together.

Activity 1. Mark the variables being mutated in the following function.

```python
def find_max(L):
    max = -infinity
    for i from 0 to len(L):
        if L[i] > max:
            max = L[i]
    return max
```

Activity 2. Solve the following reduce function call, showing each recursive step and marking the accumulator at each step.

```python
multiply = lambda x, y: x*y
reduce(multiply, [1, 2, 3, 4, 5], 1)
```
Activity 3

1. Complete this anonymous function that raises a single argument \(n \) to the \(n^{th} \) power

\[
\text{lambda } n: \quad \text{______________}
\]

2. Write a line of code that applies the function you wrote in part 1 to every element of an input list, list

3. Complete this anonymous function that takes in a single argument \(n \) and returns a function that takes in no arguments and returns \(n \)

\[
\text{lambda } n: \quad \text{______________}
\]

4. Write a line of code that applies the function you wrote in part 3 to an input list. This should give you a list of functions. Write another line of code that takes in the list of functions produced by your first line and turns it back into the original list.

\[
\begin{align*}
\text{1 function_list} & = \quad \text{___} \\
\text{2} & = \quad \text{___}
\end{align*}
\]

5. Remove odd numbers from a list using reduce.

\[
\text{def remove_odds(my_list):} \\
\text{\quad return } \quad \text{___}
\]