As always, sit with a partner and work through these together.

Activity 1. Circle the variables being mutated in the following function.

```python
def find_max(L):
    max = -infinity
    for i from 0 to len(L):
        if L[i] > max:
            max = L[i]
    return max
```

Activity 2. Solve the following reduce function call, showing each recursive step and marking the accumulator at each step.

```python
multiply = lambda x,y: x*y
reduce(multiply, [1,2,3,4,5], 1)
```
1. Complete this anonymous function that raises a single argument n to the n^{th} power

 \[
 \lambda n: _{
 \]

2. Write a line of code that applies the function you wrote in part 1 to every element of an input list, list

 \[
 list
 \]

3. Complete this anonymous function that takes in a single argument n and returns a function that takes in no arguments and returns n

 \[
 \lambda n: _{
 \]

4. Write a line of code that applies the function you wrote in part 3 to an input list. This should give you a list of functions. Write another line of code that takes in the list of functions produced by your first line and turns it back into the original list.

 \[
 1 \text{ function_list } = _{
 \]

 \[
 2 _{
 \]

5. Remove odd numbers from a list using reduce.

 \[
 \text{def remove_odds(my_list):}
 \]

 \[
 \text{ return } _{
 \]