Activity 1: Recursive array_max

Fill out the values at each recursive step of array_max([5, 1, 9, 2], 4). When you reach the base case and the function returns, write the return values in the brackets. Continue to write the return value as you go up the recursion.

array_max([5, 1, 9, 2], 4) = []

max(__, array_max([5, 1, 9, 2], __) = [])

max(__, array_max([5, 1, 9, 2], __) = [])

max(__, array_max([5, 1, 9, 2], __) = [])

Activity 2: Induction Proof

Follow along with the induction proof example shown in class (also shown here on the right-hand side of the page in italics) and fill in your own proof on the left-hand side. Prove the following for all positive integers n:

Your Proof:

$$P(n) = \sum_{x=1}^{n} \frac{n(n+1)}{2}$$

Base case (show that $P(n)$ is true for $n = 1$):

$$T(1) = (1 - 1)c1 + c0 = c0$$

Inductive Assumption (write out $P(k)$):

Assume the proposition is true

for k: $T(k) = (k - 1)c1 + c0$

Now, write out $P(k + 1)$, what you want to prove:

$$T(k + 1) = (k)c1 + c0$$
Inductive Step: Show that \(P(k + 1) \) is true given \(P(k) \)

Hint: Start with writing out the left side of \(P(k + 1) \) and filling in the right side based on the definition of a sum.

Using simplification and your inductive assumption, make the right side look like \(P(k + 1) \).

\[
T(k + 1) = c1 + T(k) \quad \text{(by recurrence relation)}
\]

\[
T(k + 1) = c1 + (k - 1)c1 + c0 \quad \text{(by induct. assump.)}
\]

\[
T(k + 1) = (k)c1 + c0 \quad \text{This is } P(k + 1).
\]

Conclusion (how does your work show that the claim is true?)

We've proven \(P(n) \) for the base case \(n = 1 \) and shown that for some \(k \), \(P(k) \) implies \(P(k + 1) \), therefore \(T(n) = (n - 1)c1 + c0 \) for positive integers \(n \).

Activity 3: Recursive Fibonacci

```python
def fib(n):
    if n == 0:
        return 0
    if n == 1:
        return 1
    return fib(n-1) + fib(n-2)
```

Recurrence relation:

\[
T(n) = c1 + T(n - 1) + T(n - 2)
\]

\[
T(0) = c0
\]

\[
T(1) = c0
\]

\[
T(2) = c1 + T(2-1) + T(2-2) = c1 + T(1) + T(0) = c1 + c0 + c0 = c1 + 2c0
\]

\[
T(3) =
\]

\[
T(4) =
\]

\[
T(5) =
\]

\[
T(n) =
\]

What is big-O of \(T(n) \)?