Worksheet #2

Please turn this in at the end of class (don't worry, we're not grading on correctness!). Make sure to write your login legibly. Sit with a partner or to work on these together though the lecture (or make friends with the people around you!) Check your answers with other neighbors.

Question 1:
How many operations are performed in the argmax function if the list has:

a. 10 elements?
 d. 40 elements?

b. 20 elements?
 e. 100 elements?

c. 30 elements?
 f. 100,000 elements?

Plot the first four of these results on the chart to the right. Ponder the bigger one.

Question 2:
How many operations are performed in the possible_products function if the list has:

a. 10 elements?
 d. 40 elements?

b. 20 elements?
 e. 100 elements?

c. 30 elements?
 f. 100,000 elements?

Plot the first four of these results on the chart to the right. Ponder the bigger one.

Question 3:

a. Does $n = O(n^2)$?

b. Does $n^2 = O(n^3)$?

c. Why or why not?

Question 4:

<table>
<thead>
<tr>
<th>Function, f(n)</th>
<th>Big-Θ</th>
<th>Another Big-Θ</th>
<th>Big-Ω</th>
<th>Big-Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$an + b$</td>
<td>$O(n)$</td>
<td>$O(n^{1+\epsilon})$</td>
<td>$\Omega(n)$</td>
<td></td>
</tr>
<tr>
<td>$an^2 + bn + c$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$\Omega(n)$</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>$O(n)$</td>
<td>$O(2^n)$</td>
<td>$\Omega(1)$</td>
<td></td>
</tr>
<tr>
<td>$3^n + an^{4\epsilon}$</td>
<td>$O(3^n)$</td>
<td>$O(50^n)$</td>
<td>$\Omega(n)$</td>
<td></td>
</tr>
<tr>
<td>$an + blog(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n \log(n))$</td>
<td>$\Omega(\log(n))$</td>
<td></td>
</tr>
</tbody>
</table>

"ahah! / "oops" moments to share with the class: