Functional Programming Paradigm

- A style of building the structure and elements of computer programs that treats computation as the evaluation of mathematical functions.

- Programs written in this paradigm rely on smaller methods that do one part of a larger task. The results of these methods are combined using function compositions to accomplish the overall task.
Approaches

‣ How do we decide to use map vs. reduce?
 ‣ Map creates a one to one mapping - we use it for (sub)-problems that involve doing the same thing to multiple elements.
 ‣ Length will stay the same!
 ‣ Reduce can be used to "summarize" a list, or create a new (smaller or larger) list
 ‣ Map can be implemented with reduce, but not vice-versa!
Using Map

‣ How to choose the function?
 ‣ What do you want to have happen to each element in the input list?
 ‣ Other variables needed for the function can be created outside of the map call if needed!

‣ Quick Tip
 ‣ Built-ins/existing functions do not need to have their arguments written out.

```python
map(lambda x: f(x), input_list) => map(f, input_list)
```
Using Reduce 1/2

- How to choose the binary function?
 - Takes in the acc and each successive element in the input list.
 - Think about how to break down your task!
 - the max of an entire list -> the max of two integers
 - remove all successive duplicates -> check if 2 elements are equal
 - Remember ternary syntax!

\[
\text{a if condition else b}
\]
Using Reduce 2/2

- How to choose the accumulator?
 - Needs to be of the type that you are returning
 - What should your operation return on the empty list?
List Syntax

- `[x]`
 - makes a list out of element `x`

- `my_list[-1]`
 - returns the last element in `my_list`

- `my_list + [x]`
 - returns a new list with `x` at the end, and does not modify the original list.
 - don’t use append! this modifies the original list and returns nothing.
Practice Problems

- Write a function that will turn a list of nouns into adverbs. (ex: loud -> loudly)
- Write a function that sums the total length of a list of strings. (ex: [“hi”, “cs16”] -> 6)
- Write a function that counts the number of times the string “dog” appears in a list of strings.
- Write a function that removes numbers less than 10 from a list of ints.
Practice Problem Answers

- \(\text{map}(\lambda \text{el}: \text{el}+”\text{ly”}, \text{input_list}) \)
- \(\text{reduce}(\lambda \text{acc}, \text{el}: \text{acc}+\text{el}, \text{map}(\text{len}, \text{input_list}), 0) \)
- \(\text{reduce}(\lambda \text{acc}, \text{el}: \text{acc}+1 \text{ if } \text{el} == "\text{dog}" \text{ else } \text{acc}, \text{input_list}, 0))) \)
- \(\text{reduce}(\lambda \text{acc}, \text{el}: \text{acc}+[\text{el}] \text{ if } \text{el} > 10 \text{ else } \text{acc}, \text{input_list}, []) \)
What is Dynamic Programming?

- Algorithm design paradigm/framework
 - Design efficient algorithms for optimization problems
- Optimization problems
 - “find the **best** solution to problem X”
 - “what is the **shortest** path between u and v in G”
 - “what is the **minimum** spanning tree in G”
- Can also be used for non-optimization problems
When is Dynamic Programming Applicable?

- **Condition #1: sub-problems**
 - The problem can be solved recursively
 - Can be solved by solving sub-problems

- **Condition #2: overlapping sub-problems**
 - Same sub-problems need to be solved many times
Sub-Problems

\[\text{Sol}(\begin{array}{c|c|c|c} & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \end{array}) = \text{Sol}(\begin{array}{c|c|c|c} & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \end{array}) \bigoplus \text{Sol}(\begin{array}{c|c|c|c} & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \end{array}) \]

\[\text{Sol}(\begin{array}{c|c|c|c} & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \end{array}) = \text{Sol}(\begin{array}{c|c|c|c} & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \end{array}) \bigoplus \text{Sol}(\begin{array}{c|c|c|c} & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \end{array}) \]

\[\text{Sol}(\begin{array}{c|c|c|c} & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \end{array}) = \text{Sol}(\begin{array}{c|c|c|c} & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \end{array}) \bigoplus \text{Sol}(\begin{array}{c|c|c|c} & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \\
\hline & & & \\ \end{array}) \]
Overlapping Sub-Problems

\[\text{Sol} \left(\begin{array}{c} \text{red} \\ \text{blue} \end{array} \right) = \text{Sol} \left(\begin{array}{c} \text{red} \\ \text{blue} \end{array} \right) \oplus \text{Sol} \left(\begin{array}{c} \text{red} \\ \text{blue} \end{array} \right) \]

\[\text{Sol} \left(\begin{array}{c} \text{red} \\ \text{blue} \end{array} \right) = \text{Sol} \left(\begin{array}{c} \text{red} \\ \text{blue} \end{array} \right) \oplus \text{Sol} \left(\begin{array}{c} \text{red} \\ \text{blue} \end{array} \right) \]

\[\text{Sol} \left(\begin{array}{c} \text{red} \\ \text{blue} \end{array} \right) = \text{Sol} \left(\begin{array}{c} \text{red} \\ \text{blue} \end{array} \right) \oplus \text{Sol} \left(\begin{array}{c} \text{red} \\ \text{blue} \end{array} \right) \]

Why solve red twice? Why solve blue twice?
When is Dynamic Programming Applicable?

- Core idea
 - Decompose problem into its sub-problems
 - and if sub-problems are overlapping then
 - solve each sub-problem once and store the solution
 - use stored solution when you need to solve sub-problem again
Steps to Solving a Problem w/ DP

- What are the sub-problems?
- What is the “magic” step?
 - Given solution to a sub-problem…
 - …how do I combine them to get solution to the problem?
- Which (topological) order on sub-problems can I use?
 - so that solutions to sub-problems available before I need them
- Design iterative algorithm
 - that solves sub-problems in order and stores their solution
Shortest Path in Layered Directed Graph

- Layered
 - edge \((x, y)\) only if \(x < y\)
- Negative & positive weights