
Analysis of Algorithms

& Big-O

CS16: Introduction to Algorithms & Data Structures

Summer 2021

How fast is this algorithm?

2

function find_least_important_seam(vals):

 dirs = 2D array with same dimensions as vals

 costs = 2D array with same dimensions as vals

 costs[height-1] = vals[height-1] // initialize bottom row of costs

 for row from height-2 to 0:

 for col from 0 to width-1:

 costs[row][col] = vals[row][col] +

 min(costs[row+1][col-1],

 costs[row+1][col],

 costs[row+1][col+1])

 dirs[row][col] = -1, 0, or 1 // depending on min

 // Find least important start pixel

 min_col = argmin(costs[0]) // Returns index of min in top row

 // Create vertical seam of size ‘height’ by tracing from top

 seam = []

 seam[0] = min_col

 for row from 0 to height-2:

 seam[row+1] = seam[row] + dirs[row][seam[row]]

 return seam

How fast is this algorithm?

3

function sum_array(array)

// Input: an array of integers

// Output: the sum of the integers  
if array.length = 0

return error

sum = 0  
for i in [0, array.length-1]:  
 sum = sum + array[i]

 return sum

Let’s measure it

4

‣ Implement it (in Python)

‣ Run it

‣ Time it

Let’s measure it

5

‣ Implement it (in Python)

‣ Run it

‣ Time it

‣ Repeat for different input sizes

What might affect these measurements?

6

Let’s try something else

7

‣ Have to look at the algorithm

‣ How long will it take?

‣ Depends on how long each operation takes

‣ +

‣ *

‣ array[i]

‣ Let’s assume each operation takes the same amount of
time

How fast is this algorithm?

8

function sum_array(array)

// Input: an array of integers

// Output: the sum of the integers  
if array.length = 0

return error

sum = 0  
for i in [0, array.length-1]:  
 sum = sum + array[i]

 return sum

1op

1op

3ops per loop

loop

1op

1op

‣ Do we count “return error”?

‣ depends on whether input array is empty

‣ if array is empty then sum_array takes 2 ops

‣ if array is not empty then sum_array takes ??? ops

Run time depends on input

9

‣ Which inputs should we choose?

‣ Best-case?

‣ Worst-case?

‣ Average-case?

‣ In general, worst-case

‣ CS is an engineering discipline

‣ If I’m building a bridge, don’t care about best-case

weight tolerance!

How fast is this algorithm?

10

function sum_array(array)

// Input: an array of integers

// Output: the sum of the integers  
if array.length = 0

return error

sum = 0  
for i in [0, array.length-1]:  
 sum = sum + array[i]

 return sum

1op

1op

3ops per loop

loop

1op

1op

‣ How long in non-empty case?

‣ Depends on loop length, which depends on array length

‣ Call the running time on an array of length n T(n)

‣ What’s T(n)?

How fast is this algorithm?

11

function sum_array(array)

// Input: an array of integers

// Output: the sum of the integers  
if array.length = 0

return error

sum = 0  
for i in [0, array.length-1]:  
 sum = sum + array[i]

 return sum

1op

1op

3ops per loop

loop

1op

1op

‣ T(n) = 3n + 3 ops

‣ Do we believe this number? What assumptions did we make?

‣ What if array accesses take twice as long as addition?

Could be any of these…
‣ 3n+3

‣ 4n+3

‣ n+5

‣ …

‣ What can we say for sure?

Linear

Running Times

Constant

independent of input size

Linear

depends on input size

Quadratic

depends on square of input size

Constant Running Time

‣ How many operations are executed?

‣ T(n)=2 ops

‣ What if array has 100 elements?

‣ What if array has 100,000 elements?

‣ key observation:

‣ running time does not depend on array size!

14

function first(array):

// Input: an array

// Output: the first element

return array[0]

2ops

What’s the running time?

15

function possible_products(array):  
 // Input: an array  
 // Output: a list of all possible products  
 // between any two elements in the list  
 products = []  
 for i in [0, array.length):  
 for j in [0, array.length):  
 products.append(array[i] * array[j])  
 return products

1op
loop
loop per loop
4ops per loop
per loop

1op

Quadratic

What’s the running time?

16

function argmax(array)

// Input: an array

// Output: the index of the maximum value  
index = 0  
for i in [1, array.length):  
 if array[i] > array[index]:

 index = i

 return index

1op
loop

3ops per loop
1op per loop  
(sometimes)
1op

Linear

Q: how do we compare running times?

Which Algorithm is Better?
‣ Algorithm A takes TA(n)=30n+10 ops

‣ Algorithm B takes TB(n)=5n ops

18

Which Algorithm is Better?
‣ Alg A takes TA(n)=5n+1000 ops

‣ Alg B takes TB(n)=10n+2 ops

‣ It depends on n

19

rtime(A) < rtime(B) ⟺ 5n+1000 < 10n+2

 ⟺ 5n > 998

 ⟺ n > 199.6

Which Algorithm is Better?
‣ Alg A takes TA(n)=1000n2 ops

‣ Alg B takes TB(n)=n8 ops

‣ It depends on n

20

rtime(A) < rtime(B) ⟺ 1000n2 < n8

 ⟺ 1000n2 - n8 < 0

 ⟺ n2(1000 - n6) < 0

 ⟺ 1000 - n6 < 0

 ⟺ n > 10001/6

 ⟺ n > 3.16…

What is Running Time?

21

Asymptotic worst-case running time

=

Number of elementary operations

on worst-case input

as a function of input size n

when n tends to infinity

In CS “running time” usually means asymptotic worst-case running
time…but not always!

we will learn about other kinds of running times

Comparing Running Times

22

Comparing asymptotic running times

=

TA(n) is better than TB(n) if

for large enough n

TA(n) grows slower than TB(n)

Q: can we formalize all this mathematically?

Big-O

‣ TA(n)’s order of growth is at most TB(n)’s order of growth

‣ Examples

‣ 2n+10 is O(n)

24

Definition (Big-O): TA(n) is O(TB(n)) if
there exists positive constants c and n0 such that:

TA(n) ≤ c∙TB(n)

for all n ≥ n0

Big-O
‣ How do we find “the Big-O of something”?

‣ Usually you “eyeball” it

‣ Then you try to prove it

‣ (most of the time in CS16 it will be simple enough that you

don’t need to prove it)

25

Big-O Examples

‣ Guess that 2n+10 is O(n). Can we prove it?

‣ If we set c=3, can we find an n0 such that for all n ≥ n0, 2n+10 ≤ 3∙n?

26

Definition (Big-O): TA(n) is O(TB(n)) if
there exists positive constants c and n0 such that:

TA(n) ≤ c∙TB(n)

for all n ≥ n0

2n+10 ≤ 3n ⟺ -n + 10 ≤ 0

 ⟺ n ≥ 10

c

n0

What is n0 ?

We don’t care what happens here

n0

We only care what happens here

n

T(n)

‣ n2 is not O(n). Why?

‣ What do we have to show to prove that n2 is O(n)?

‣ We have to find a positive constant c,

‣ and a positive constant n0 such that

‣ for all n > n0, n2 ≤ c∙n

‣ This is not possible!

More Big-O Examples

28

n2 ≤ c∙n ⟺ n ≤ c
 Not possible when n

grows & c is constant

Eyeballing Big-O
‣ If T(n) is a polynomial of degree d, T(n) = and + bnd-1 + … + wn + z

‣ then T(n) is O(nd)

‣ In other words you can ignore

‣ lower-order terms

‣ constant factors

‣ Examples

‣ 1000n2+400n+739 is O(n2)

‣ n80+43n72+5n+1 is O(n80)
‣ For the Big-O, use the smallest upper bound

‣ 2n is O(n50) but that’s not really a useful bound

‣ instead it is better to say that 2n is O(n)

29

Eyeballing Big-O
‣ n10+2020 is O(n10) but also O(n11),…,O(n50),…

‣ but better to say it is O(n10)

‣ There are at most 300 people in this room

‣ there are also at most 1000,…,1M, …

‣ but telling me there are at most 300 is more “useful”

30

More Eyeballing Big-O
‣ Find Big-O of 3 algorithms

‣ runtime of first is T(n)=2

‣ runtime of argmax is T(n)=4n+2

‣ runtime of possible_products is T(n)=4n2+n+3

‣ Replace constants with “c” (they are irrelevant as n grows)

‣ first: T(n)=c

‣ argmax: T(n)=c0n+c1
‣ possible_products: T(n)=c0n2+n+c1

31

More Eyeballing Big-O
‣ Discard lower-order terms & constants

‣ first: T(n)=c is O(1)

‣ argmax: T(n)=c0n+c1 is O(n)

‣ possible_products: T(n)=c0n2+n+c1 is O(n2)

‣ The convention for T(n)=c is to write O(1)

32

Running Times

33

Big-O

‣ TA(n)’s growth rate is upper bounded by TB(n)’s
growth rate

‣ But what if we need to express a lower bound?

‣ we use Big-Ω notation!

34

Definition (Big-O): TA(n) is O(TB(n)) if
there exists positive constants c and n0 such that:

TA(n) ≤ c∙TB(n)

for all n ≥ n0

Big-Omega

‣ TA(n)’s growth rate is lower bounded by
TB(n)’s growth rate

‣ What about an upper and a lower bound?

‣ We use Big-𝝧 notation
35

Definition (Big-Ω): TA(n) is Ω(TB(n)) if
there exists positive constants c and n0 such that:

TA(n) ≥ c∙TB(n)

for all n ≥ n0

Big-Theta

‣ TA(n)’s growth rate is the same as TB(n)’s

36

Definition (Big-𝝧): TA(n) is 𝝧(TB(n)) if it is
O(TB(n)) and Ω(TB(n)).

More Examples

37

 T(n) Big-O Another

Big-O Big-Ω Big-𝝧

an + b O(n) O(n100) Ω(n)

an2 + bn + c O(n3) O(n2) Ω(n)

a O(n) O(1) Ω(1)

3n + an40 O(3n) O(50n) Ω(n)

an + b log n O(n2) O(n)) Ω(logn)

𝝧(n)

𝝧(n2)

𝝧(1)

𝝧(3n)

𝝧(n)

Key takeaways
‣ We can analyze algorithm running time independent of

implementation

‣ Important thing is behavior as input grows

‣ We’ll be doing a fair amount of running time analysis

using Big-O notation and proofs

‣ Big-O might seem complex at first

‣ It’s just formalizing the intuition from earlier—

constant factors don’t matter

38

How fast is this algorithm?

39

function find_least_important_seam(vals):

 dirs = 2D array with same dimensions as vals

 costs = 2D array with same dimensions as vals

 costs[height-1] = vals[height-1] // initialize bottom row of costs

 for row from height-2 to 0:

 for col from 0 to width-1:

 costs[row][col] = vals[row][col] +

 min(costs[row+1][col-1],

 costs[row+1][col],

 costs[row+1][col+1])

 dirs[row][col] = -1, 0, or 1 // depending on min

 // Find least important start pixel

 min_col = argmin(costs[0]) // Returns index of min in top row

 // Create vertical seam of size ‘height’ by tracing from top

 seam = []

 seam[0] = min_col

 for row from 0 to height-2:

 seam[row+1] = seam[row] + dirs[row][seam[row]]

 return seam

Additional Readings
‣ To read more on asymptotic runtime and Big-O

‣ Dasgupta et al. section 0.3 (pp. 15-17)

‣ Roughgarden Part 1, Chap 2

40

References
‣ Slide #12

‣ Usain Bolt (constant): 8-time Olympic gold medalist

and greatest sprinter of all time

‣ Sally Pearson (linear): 2012 Olympic world champion

in 100m hurdles, 2011 and 2017 World Champion

‣ Wilson Kipsang (quadratic): former marathon world-

record holder, Olympic marathon bronze medalist

‣ Eliud Kipchoge (quadratic): 2016 Olympic marathon

gold medalist, greatest marathoner of the modern era

41

