
Analysis of Algorithms 

& Big-O

CS16: Introduction to Algorithms & Data Structures

Summer 2021



How fast is this algorithm?
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function find_least_important_seam(vals):

    dirs = 2D array with same dimensions as vals

    costs = 2D array with same dimensions as vals

    costs[height-1] = vals[height-1] // initialize bottom row of costs


    for row from height-2 to 0:

        for col from 0 to width-1:

            costs[row][col] = vals[row][col] +

                              min(costs[row+1][col-1],

                                  costs[row+1][col],

                                  costs[row+1][col+1])

            dirs[row][col] = -1, 0, or 1 // depending on min


    // Find least important start pixel

    min_col = argmin(costs[0]) // Returns index of min in top row


    // Create vertical seam of size ‘height’ by tracing from top

    seam = []

    seam[0] = min_col

    for row from 0 to height-2:

        seam[row+1] = seam[row] + dirs[row][seam[row]]


    return seam



How fast is this algorithm?
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function sum_array(array)

// Input: an array of integers

// Output: the sum of the integers  
if array.length = 0


return error

sum = 0       
for i in [0, array.length-1]:  
  sum = sum + array[i]              


    return sum             




Let’s measure it
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‣ Implement it (in Python)

‣ Run it

‣ Time it



Let’s measure it
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‣ Implement it (in Python)

‣ Run it

‣ Time it

‣ Repeat for different input sizes



What might affect these measurements?
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Let’s try something else
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‣ Have to look at the algorithm

‣ How long will it take?

‣ Depends on how long each operation takes

‣ +

‣ *

‣ array[i]


‣ Let’s assume each operation takes the same amount of 
time



How fast is this algorithm?
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function sum_array(array)

// Input: an array of integers

// Output: the sum of the integers  
if array.length = 0


return error

sum = 0       
for i in [0, array.length-1]:  
  sum = sum + array[i]              


    return sum             

1op

1op

3ops per loop

loop

1op

1op

‣ Do we count “return error”? 


‣ depends on whether input array is empty


‣ if array is empty then sum_array takes 2 ops


‣ if array is not empty then sum_array takes ??? ops



Run time depends on input
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‣ Which inputs should we choose?

‣ Best-case?

‣ Worst-case?

‣ Average-case?


‣ In general, worst-case

‣ CS is an engineering discipline

‣ If I’m building a bridge, don’t care about best-case 

weight tolerance!



How fast is this algorithm?
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function sum_array(array)

// Input: an array of integers

// Output: the sum of the integers  
if array.length = 0


return error

sum = 0       
for i in [0, array.length-1]:  
  sum = sum + array[i]              


    return sum             

1op

1op

3ops per loop

loop

1op

1op

‣ How long in non-empty case?


‣ Depends on loop length, which depends on array length


‣ Call the running time on an array of length n T(n)


‣ What’s T(n)?



How fast is this algorithm?
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function sum_array(array)

// Input: an array of integers

// Output: the sum of the integers  
if array.length = 0


return error

sum = 0       
for i in [0, array.length-1]:  
  sum = sum + array[i]              


    return sum             

1op

1op

3ops per loop

loop

1op

1op

‣ T(n) = 3n + 3 ops


‣ Do we believe this number? What assumptions did we make?


‣ What if array accesses take twice as long as addition?



Could be any of these…
‣ 3n+3

‣ 4n+3

‣ n+5

‣ …

‣ What can we say for sure?

Linear



Running Times

Constant

independent of input size

Linear

depends on input size

Quadratic

depends on square of input size



Constant Running Time

‣ How many operations are executed?


‣ T(n)=2 ops


‣ What if array has 100 elements?


‣ What if array has 100,000 elements?

‣ key observation: 


‣ running time does not depend on array size!
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function first(array):

// Input: an array

// Output: the first element

return array[0]


   
2ops



What’s the running time?
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function possible_products(array):  
   // Input: an array  
   // Output: a list of all possible products  
   //         between any two elements in the list  
   products = []                       
   for i in [0, array.length):        
      for j in [0, array.length):  
         products.append(array[i] * array[j])  
   return products               


1op
loop         
loop per loop            
4ops per loop 
per loop

1op

Quadratic



What’s the running time?
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function argmax(array)

// Input: an array

// Output: the index of the maximum value  
index = 0       
for i in [1, array.length):  
  if array[i] > array[index]: 


 index = i               

    return index             


1op
loop

3ops per loop
1op per loop  
(sometimes)
1op

Linear



Q: how do we compare running times?



Which Algorithm is Better?
‣ Algorithm A takes TA(n)=30n+10 ops


‣ Algorithm B takes TB(n)=5n ops
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Which Algorithm is Better?
‣ Alg A takes TA(n)=5n+1000 ops  


‣ Alg B takes TB(n)=10n+2 ops


‣ It depends on n
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rtime(A) < rtime(B) ⟺ 5n+1000 < 10n+2 


                    ⟺ 5n > 998 


                    ⟺ n > 199.6



Which Algorithm is Better?
‣ Alg A takes TA(n)=1000n2 ops


‣ Alg B takes TB(n)=n8 ops


‣ It depends on n
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rtime(A) < rtime(B) ⟺ 1000n2 < n8 


                    ⟺ 1000n2 - n8 < 0


                    ⟺ n2(1000 - n6) < 0


                    ⟺ 1000 - n6 < 0


                    ⟺ n > 10001/6

                    ⟺ n > 3.16…



What is Running Time?
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Asymptotic worst-case running time

= 


Number of elementary operations

on worst-case input


as a function of input size n

when n tends to infinity

In CS “running time” usually means asymptotic worst-case running 
time…but not always!


we will learn about other kinds of running times



Comparing Running Times
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Comparing asymptotic running times

= 


TA(n) is better than TB(n) if

for large enough n


TA(n) grows slower than TB(n)



Q: can we formalize all this mathematically?



Big-O

‣ TA(n)’s order of growth is at most TB(n)’s order of growth


‣ Examples


‣ 2n+10 is O(n)
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Definition (Big-O): TA(n) is O(TB(n)) if 
there exists positive constants c and n0 such that: 


TA(n) ≤ c∙TB(n) 

for all n ≥ n0



Big-O
‣ How do we find “the Big-O of something”?

‣ Usually you “eyeball” it

‣ Then you try to prove it

‣ (most of the time in CS16 it will be simple enough that you 

don’t need to prove it)
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Big-O Examples

‣ Guess that 2n+10 is O(n). Can we prove it?


‣ If we set c=3, can we find an n0 such that for all n ≥ n0, 2n+10 ≤ 3∙n?

26

Definition (Big-O): TA(n) is O(TB(n)) if 
there exists positive constants c and n0 such that: 


TA(n) ≤ c∙TB(n) 

for all n ≥ n0

2n+10 ≤ 3n ⟺ -n + 10 ≤ 0 


           ⟺ n ≥ 10 


c

n0



What is n0 ?

We don’t care what happens here

n0

We only care what happens here

n

T(n)



‣ n2 is not O(n). Why? 


‣ What do we have to show to prove that n2 is O(n)?


‣ We have to find a positive constant c,


‣ and a positive constant n0 such that


‣ for all n > n0, n2 ≤ c∙n

‣ This is not possible!

More Big-O Examples
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n2 ≤ c∙n ⟺ n ≤ c 
 Not possible when n 

grows & c is constant



Eyeballing Big-O
‣ If T(n) is a polynomial of degree d, T(n) = and + bnd-1 + … + wn + z

‣ then T(n) is O(nd) 

‣ In other words you can ignore


‣ lower-order terms

‣ constant factors


‣ Examples


‣ 1000n2+400n+739 is O(n2)


‣ n80+43n72+5n+1 is O(n80)
‣ For the Big-O, use the smallest upper bound


‣ 2n is O(n50) but that’s not really a useful bound


‣ instead it is better to say that 2n is O(n) 
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Eyeballing Big-O
‣ n10+2020 is O(n10) but also O(n11),…,O(n50),…

‣ but better to say it is O(n10)

‣ There are at most 300 people in this room


‣ there are also at most 1000,…,1M, …


‣ but telling me there are at most 300 is more “useful”
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More Eyeballing Big-O
‣ Find Big-O of 3 algorithms


‣ runtime of first is  T(n)=2

‣ runtime of argmax is  T(n)=4n+2

‣ runtime of possible_products is  T(n)=4n2+n+3

‣ Replace constants with “c” (they are irrelevant as n grows)


‣ first:  T(n)=c 


‣ argmax:  T(n)=c0n+c1
‣ possible_products:  T(n)=c0n2+n+c1
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More Eyeballing Big-O
‣ Discard lower-order terms & constants


‣ first:  T(n)=c is O(1) 


‣ argmax:  T(n)=c0n+c1 is O(n)

‣ possible_products:  T(n)=c0n2+n+c1 is O(n2)

‣ The convention for T(n)=c is to write O(1)
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Running Times

33



Big-O

‣ TA(n)’s growth rate is upper bounded by TB(n)’s 
growth rate


‣ But what if we need to express a lower bound?


‣ we use Big-Ω notation!
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Definition (Big-O): TA(n) is O(TB(n)) if 
there exists positive constants c and n0 such that: 


TA(n) ≤ c∙TB(n) 

for all n ≥ n0



Big-Omega

‣ TA(n)’s growth rate is lower bounded by 
TB(n)’s growth rate


‣ What about an upper and a lower bound?


‣ We use Big-𝝧 notation
35

Definition (Big-Ω): TA(n) is Ω(TB(n)) if 
there exists positive constants c and n0 such that: 


TA(n) ≥ c∙TB(n) 

for all n ≥ n0



Big-Theta

‣ TA(n)’s growth rate is the same as TB(n)’s
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Definition (Big-𝝧): TA(n) is 𝝧(TB(n)) if it is 
O(TB(n)) and Ω(TB(n)).



More Examples
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 T(n) Big-O Another

Big-O Big-Ω Big-𝝧

an + b O(n) O(n100) Ω(n)

an2 + bn + c O(n3) O(n2) Ω(n)

a O(n) O(1) Ω(1)

3n + an40 O(3n) O(50n) Ω(n)

an + b log n O(n2) O(n)) Ω(logn)

𝝧(n)

𝝧(n2)

𝝧(1)

𝝧(3n)

𝝧(n)



Key takeaways
‣ We can analyze algorithm running time independent of 

implementation

‣ Important thing is behavior as input grows

‣ We’ll be doing a fair amount of running time analysis 

using Big-O notation and proofs

‣ Big-O might seem complex at first

‣ It’s just formalizing the intuition from earlier—

constant factors don’t matter
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How fast is this algorithm?
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function find_least_important_seam(vals):

    dirs = 2D array with same dimensions as vals

    costs = 2D array with same dimensions as vals

    costs[height-1] = vals[height-1] // initialize bottom row of costs


    for row from height-2 to 0:

        for col from 0 to width-1:

            costs[row][col] = vals[row][col] +

                              min(costs[row+1][col-1],

                                  costs[row+1][col],

                                  costs[row+1][col+1])

            dirs[row][col] = -1, 0, or 1 // depending on min


    // Find least important start pixel

    min_col = argmin(costs[0]) // Returns index of min in top row


    // Create vertical seam of size ‘height’ by tracing from top

    seam = []

    seam[0] = min_col

    for row from 0 to height-2:

        seam[row+1] = seam[row] + dirs[row][seam[row]]


    return seam



Additional Readings
‣ To read more on asymptotic runtime and Big-O

‣ Dasgupta et al. section 0.3 (pp. 15-17)

‣ Roughgarden Part 1, Chap 2 
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