Analysis of Algorithms & Big-O

CS I 6: Introduction to Algorithms & Data Structures
Summer 202 I

How fast is this algorithm?

```
function find least important seam(vals):
    dirs = 2D array with same dimensions as vals
    costs = 2D array with same dimensions as vals
    costs[height-1] = vals[height-1] // initialize bottom row of costs
    for row from height-2 to 0:
        for col from 0 to width-1:
            costs[row][col] = vals[row][col] +
                              min(costs[row+1][col-1],
                                  costs[row+1][col],
                                  costs[row+1][col+1])
            dirs[row][col] = -1, 0, or 1 // depending on min
    // Find least important start pixel
   min col = argmin(costs[0]) // Returns index of min in top row
    // Create vertical seam of size 'height' by tracing from top
    seam = []
    seam[0] = min col
    for row from 0 to height-2:
        seam[row+1] = seam[row] + dirs[row][seam[row]]
    return seam
```

How fast is this algorithm?

```
function sum_array(array)
   // Input: an array of integers
   // Output: the sum of the integers
   if array.length = 0
      return error
   sum = 0
   for i in [0, array.length-1]:
      sum = sum + array[i]
   return sum
```

Let's measure it

- ▶ Implement it (in Python)
- ▶ Run it
- Time it

Let's measure it

- Implement it (in Python)
- ▶ Run it
- ▶ Time it
- Repeat for different input sizes

What might affect these measurements?

Let's try something else

- Have to look at the algorithm
- How long will it take?
- Depends on how long each operation takes
 - **+**
 - *****
 - array[i]
- Let's assume each operation takes the same amount of time

How fast is this algorithm?

- Do we count "return error"?
 - depends on whether input array is empty
 - if array is empty then sum_array takes 2 ops
 - if array is not empty then sum_array takes??? ops

Run time depends on input

- Which inputs should we choose?
 - Best-case?
 - Worst-case?
 - Average-case?
- In general, worst-case
 - CS is an engineering discipline
 - If I'm building a bridge, don't care about best-case weight tolerance!

How fast is this algorithm?

- How long in non-empty case?
 - Depends on loop length, which depends on array length
 - Call the running time on an array of length n T(n)
 - What's T(n)?

How fast is this algorithm?

- T(n) = 3n + 3 ops
- Do we believe this number? What assumptions did we make?
- What if array accesses take twice as long as addition?

Could be any of these...

- \rightarrow 3n+3
- \rightarrow 4n+3
- ▶ n+5
- **)** ...
- What can we say for sure?

Running Times

Constant independent of input size

Lineardepends on input size

Quadratic
depends on square of input size

Constant Running Time

- How many operations are executed?
 - T(n)=2 ops
 - What if array has 100 elements?
 - What if array has 100,000 elements?

key observation:

running time does not depend on array size!

What's the running time?

What's the running time?

how do we compare running times?

Which Algorithm is Better?

- Algorithm \triangle takes $T_A(n) = 30n + 10$ ops
- Algorithm **B** takes $T_B(n)=5n$ ops

Which Algorithm is Better?

- Alg \triangle takes $T_A(n)=5n+1000$ ops
- Alg B takes $T_B(n)=10n+2$ ops
- It depends on n

```
rtime(A) < rtime(B) \iff 5n+1000 < 10n+2 \iff 5n > 998 \iff n > 199.6
```


Which Algorithm is Better?

- Alg A takes $T_A(n) = 1000n^2$ ops
- Alg B takes $T_B(n) = n^8$ ops
- lt depends on **n**

```
rtime(A) < rtime(B) \iff 1000n<sup>2</sup> < n<sup>8</sup> 

\iff 1000n<sup>2</sup> - n<sup>8</sup> < 0 

\iff n<sup>2</sup>(1000 - n<sup>6</sup>) < 0 

\iff 1000n<sup>2</sup>(Alg. A) 

\implies n > 10001/6 

\implies n > 3.16...
```


What is Running Time?

Asymptotic worst-case running time

=
Number of elementary operations
on worst-case input
as a function of input size n
when n tends to infinity

In CS "running time" usually means asymptotic worst-case running time...but not always!

we will learn about other kinds of running times

Comparing Running Times

```
Comparing asymptotic running times
=
T_A(n) is better than T_B(n) if
for large enough n
T_A(n) grows slower than T_B(n)
```

can we formalize all this mathematically?

Big-O

Definition (Big-O): $T_A(n)$ is $O(T_B(n))$ if there exists positive constants c and n_0 such that: $T_A(n) \le c \cdot T_B(n)$ for all $n \ge n_0$

- Arr $T_A(n)$'s order of growth is at most $T_B(n)$'s order of growth
- Examples
 - \rightarrow 2n+10 is O(n)

Big-O

- ▶ How do we find "the Big-O of something"?
 - Usually you "eyeball" it
 - Then you try to prove it
 - (most of the time in CS16 it will be simple enough that you don't need to prove it)

Big-O Examples

```
Definition (Big-O): T_A(n) is O(T_B(n)) if there exists positive constants c and n_0 such that: T_A(n) \le c \cdot T_B(n) for all n \ge n_0
```

- Guess that 2n+10 is O(n). Can we prove it?
 - ▶ If we set c=3, can we find an n_0 such that for all $n \ge n_0$, $2n+10 \le 3 \cdot n$?

What is n_0 ?

We don't care what happens here

We only care what happens here

More Big-O Examples

- \rightarrow n² is not O(n). Why?
 - Mhat do we have to show to prove that n^2 is O(n)?
 - We have to find a positive constant c,
 - ▶ and a positive constant n₀ such that
 - for all $n > n_0, n^2 \le c \cdot n$
 - This is not possible!

$$n^2 \le c \cdot n \iff n \le c$$

Not possible when n grows & c is constant

Eyeballing Big-O

- If T(n) is a polynomial of degree d, $T(n) = an^d + bn^{d-1} + ... + wn + z$
 - then T(n) is O(nd)
- In other words you can ignore
 - lower-order terms
 - constant factors
- Examples
 - \rightarrow 1000n²+400n+739 is O(n²)
 - $n^{80}+43n^{72}+5n+1$ is $O(n^{80})$
- For the Big-O, use the smallest upper bound
 - ▶ 2n is O(n⁵⁰) but that's not really a useful bound
 - instead it is better to say that 2n is O(n)

Eyeballing Big-O

- $n^{10}+2020$ is $O(n^{10})$ but also $O(n^{11}),...,O(n^{50}),...$
 - but better to say it is O(n¹⁰)
- There are at most 300 people in this room
 - ▶ there are also at most 1000,...,1M, ...
 - but telling me there are at most 300 is more "useful"

More Eyeballing Big-O

- Find Big-O of 3 algorithms
 - runtime of first is T(n)=2
 - runtime of argmax is T(n)=4n+2
 - runtime of possible_products is $T(n)=4n^2+n+3$
- ▶ Replace constants with "c" (they are irrelevant as n grows)
 - first: T(n)=c
 - argmax: $T(n)=c_0n+c_1$
 - possible_products: $T(n)=c_0n^2+n+c_1$

More Eyeballing Big-O

- Discard lower-order terms & constants
 - first: T(n) = c is O(1)
 - argmax: $T(n)=c_0n+c_1$ is O(n)
 - ▶ possible_products: $T(n)=c_0n^2+n+c_1$ is $O(n^2)$
- The convention for T(n)=c is to write O(1)

Running Times

n	$\log n$	n	$n \log n$	n^2	n^3	2^n
8	3	8	24	64	512	256
16	4	16	64	256	4,096	65,536
32	5	32	160	1,024	32,768	4, 294, 967, 296
64	6	64	384	4,096	262,144	1.84×10^{19}
128	7	128	896	16,384	2,097,152	3.40×10^{38}
256	8	256	2,048	65,536	16,777,216	1.15×10^{77}
512	9	512	4,608	262,144	134, 217, 728	1.34×10^{154}

Big-O

```
Definition (Big-O): T_A(n) is O(T_B(n)) if there exists positive constants c and n_0 such that: T_A(n) \le c \cdot T_B(n) for all n \ge n_0
```

- $Arr T_A(n)$'s growth rate is upper bounded by $T_B(n)$'s growth rate
- But what if we need to express a lower bound?
 - we use Big- Ω notation!

Big-Omega

```
Definition (Big-\Omega): T_A(n) is \Omega(T_B(n)) if there exists positive constants c and n_0 such that: T_A(n) \ge c \cdot T_B(n) for all n \ge n_0
```

- T_A(n)'s growth rate is lower bounded by T_B(n)'s growth rate
- What about an upper and a lower bound?
 - ▶ We use Big-⊖ notation

Big-Theta

```
Definition (Big-\Theta): T_A(n) is \Theta(T_B(n)) if it is O(T_B(n)) and \Omega(T_B(n)).
```

 $ightharpoonup T_A(n)$'s growth rate is the same as $T_B(n)$'s

More Examples

T(n)	Big-O	Another Big-O	Big-Ω	Big- O
an + b	O(n)	O(n ¹⁰⁰)	Ω(n)	Θ(n)
an ² + bn + c	O(n ³)	O(n ²)	Ω(n)	Θ (n ²)
a	O(n)	0(1)	Ω(1)	Θ(1)
$3^{n} + an^{40}$	O(3 ⁿ)	O(50 ⁿ)	Ω(n)	\(\theta\) (3n)
an + b log n	O(n ²)	O(n))	Ω (logn)	θ(n)

Key takeaways

- We can analyze algorithm running time independent of implementation
- Important thing is behavior as input grows
- We'll be doing a fair amount of running time analysis using Big-O notation and proofs
 - ▶ Big-O might seem complex at first
 - It's just formalizing the intuition from earlier—constant factors don't matter

How fast is this algorithm?

```
function find least important seam(vals):
    dirs = 2D array with same dimensions as vals
    costs = 2D array with same dimensions as vals
    costs[height-1] = vals[height-1] // initialize bottom row of costs
    for row from height-2 to 0:
        for col from 0 to width-1:
            costs[row][col] = vals[row][col] +
                              min(costs[row+1][col-1],
                                  costs[row+1][col],
                                  costs[row+1][col+1])
            dirs[row][col] = -1, 0, or 1 // depending on min
    // Find least important start pixel
   min col = argmin(costs[0]) // Returns index of min in top row
    // Create vertical seam of size 'height' by tracing from top
    seam = []
    seam[0] = min col
    for row from 0 to height-2:
        seam[row+1] = seam[row] + dirs[row][seam[row]]
    return seam
```

Additional Readings

- ▶ To read more on asymptotic runtime and Big-O
 - Dasgupta et al. section 0.3 (pp. 15-17)
 - Roughgarden Part I, Chap 2

References

- ▶ Slide #12
 - Usain Bolt (constant): 8-time Olympic gold medalist and greatest sprinter of all time
 - Sally Pearson (linear): 2012 Olympic world champion in 100m hurdles, 2011 and 2017 World Champion
 - Wilson Kipsang (quadratic): former marathon worldrecord holder, Olympic marathon bronze medalist
 - ▶ Eliud Kipchoge (quadratic): 2016 Olympic marathon gold medalist, greatest marathoner of the modern era