Fxpandable Stack (o8

Stack(): Run time depends on
data = array of size 20 count which depends on
count = # of previous pushes

capacity = 20

function push(object):
data[count] = object
count++
1f count == capacity
new capacity = capacity + e /* incremental */
= capacity * 2 /* doubling */

new data = array of size new capacity

for 1 = 0 to capacity - 1

new data[1] = data[1]
capacity = new capacity
data = new data

Amortized Analysis of Incremental

» Summary
» Jotal cost of n pushes: S(n) = 0(n2)

» Amortized cost of n pushes: S(n)/n = O(n)

Amortized Analysis of Double

Amortized Analysis of Doubling

4

Doubling stack with initial capacity ¢=5¢

_cost of pushes

S(n) 5(5) S e i cost of exp

S(n) _ 5(10) _ 10+5+10 *7" -
0 10 e

<---- cost of exp
S(n) _ S(20) _ 20+5+10+20 17 SOSE
n 20 20

Amortized Analysis of Doubling

cost of second

cost of n pushles cgst of lastexp ..--~ to last exp
VA e Pl
o Vg) i peasacs cost of exp #I
1 1 1
k
L T S A A N s L using:| |im e,
k— o0 4 L
= 3N o
Assume; S(n)
c=2 n e 0(1)
n=2k

Amortized Analysis

» Summary for Incremental

» Jotal cost of n pushes: S(n) = 0(n2)

» Amortized cost of n pushes: S(n)/n = O(n)
» Summary for Doubling

» Jotal cost of n pushes: S(n) = O(n)

» Amortized cost of n pushes: S(n)/n = 0O(1)

» In practice: always use doubling

How do we feel about amortized analysis?

» Situations where worst case I1s most important!

Expandable Queue

Queue AD T

» enqueue (object):

» Inserts object

» object dequeue()

» returns and removes first inserted object

e s1zZe()

» returns number objects In queue

» boolean isEmpty()

» returns TRUE If empty; FALSE otherwise

®,

xpandable Queue

|

head
tail
» Can be implemented with expandable array

» need to keep track of head and tall

xpandable Queue

il

head tail

» Can be implemented with ex

handable array

PR Cdiiekeep lirdcik of heac

and tall

xpandable Queue

T

head tail

» Can be implemented with expandable array

» need to keep track of head and tall

xpandable Queue

|

head tail

» Can be implemented with ex

handable array

PR Cdiiekeep lirdcik of heac

and tall

xpandable Queue

| T

head tail

» Can be implemented with expandable array

» need to keep track of head and tall
» What happens when taill reaches end?
RN queue full?

» SO when should we expand array?

7

xpandable Queue

T |

tail head

» Wrap around until array is completely full

» When expanding re-order objects properly

xpandable Queue

function enqueue(object):
1f size == capacity
double array and copy contents

reset head and tail pointers
data[tail] = object
tail = (tail + 1) % capacity

size++

function dequeue():
1f size ==
error (“queue empty”)
element = data[head]
head = (head + 1) % capacity
size--
return element

Sets, Dictionaries &
Hash [ables

CS16: Introduction to Data Structures & Algorithms
Summer 202 |

Arrays (Non-expandable)

“WY” ((VT” €€ A K” €6 N D” €6 S D” €6 D E” €6 M T” €6 RI ’»

0 | 9 5 4 S 6 e

Arrays (Non-expandable)

“WY” ((VT” €€ A K” €6 N D” €6 S D” €6 D E” €6 M T” €6 RI ’»

0 | 9 5 4 S 6 e

1000 1001 1002 1003 1004 1005 1006 1007

Arrays (Non-expandable)

“WY” (‘VT” €€ A K” €6 N D” €6 s D” €6 D E” €6 M T” €6 RI ’»

0 | 9 5 4 S 6 e

1000 1001 1002 1003 1004 1005 1006 1007

I URitAne o get the Stn element!

i Ritihne o et the Index of "RITY

20

Arrays (expandable)

» Implemented like expandable stacks/queues
» Resize when full

» Accesses still O(l) on average

Dictionary

» Collection of key/value pairs

» distinct and unordered keys

all
£l
i |
Al
el
7 |
#

» Supports value lookup by key
» Also known as a map

» “maps’ keys to values
» examples

» name — address

» word — definrtion

» postal abbreviation — state name

il

Dictionary AD |

» add(key, value): » int size():

» adds key/value pair to dict. » returns number key/value pairs
» object get(key): » boolean isEmpty():

» returns value mapped to key » returns TRUE If dict. is empty;

FALSE otherwise
» remove(key):

» removes key/value pair

Array-based Dictionary

» Can we use an expandable array A!
» add(k, v):
» store (k,v) Infirst empty cell of A
» get(k):
» scan A to find value with key key=k
» remove(k):
» scan A to find pair with key=k & remove

» Runtimes!?

A

O. how would you build a (basic) search engine?
N/

What's so Hard about Search Engines?

"The Google Search index contains

hundreds of billions of webpagesjand
Is well over 100,000,000 gigabytes in

size."

How Google Search Works | Crawling &
Indexing

https:.//www.google.com > search » crawl...

GO gle Brown University Q

All News Images Maps Videos More Settings Tools

About 3,730,000,000 results §1.05 seconds)

Brown University
https://www.brown.edu/ v

Brown University, founded in 1764, is a member of the Ivy League and recognized for the quality of
its teaching, research, and unique curriculum. Providence ...

26

Search [hrough Each Page!

» Assume Google indexes 200 billion pages
» |t we scan 1 page In 1 microsecond
» each search would take 55 hours

» How can we Improve search time!

AQ

A I o’ % :
- [E -
o o Bal @ E s Wolfram

>
=
M
<
rm

‘T Yandex

LT

()
O. can we do better?
N/

Yes! with a Hash lable

» Hash tables are composed of

» an (expandable) array A

» and a ‘‘hash’ function h: X—Y

& h(x)

LS

Yes! with a Hash lable

» A hash function is function hs X—Y that

» shrinks: maps elements from a large input space to a smaller

output space X
@ h Y

» well spread. h spreads elements of X over Y

Dictionary vs. Hash lable

» A dictionary (or map) Is an abstract data type
» can be implemented using many different data structures
» A hash table Is a dictionary data structure

» one specific way to Implement a dictionary

3

N\

Building a Dictionary w/ a Hash Table -(&g

» Choose a hash function h: X—>Y with

» X ="universe of keys” and Y = "indices of array”
» add(k,Vv)
» set A[h(k)]=v
» get(k)
» return v=A[h (k)]
» remove(k)
» delete A[h(Kk)]

» Runtimes!?

B

Hash lable — Add

keys: banner IDs
values: names

00943855 &

Kalla Jeter ol 54
OCTASIH S N
Chantal Toupin s . o’

00238494 & R o
Alejandro ’
Molina e T

00472885
David Laidlaw ‘4

55

00472885
David Laidlaw

00943855
Kalla |eter

00238494
Alejandro Molina

QOTEISEAN
Chantal Toupin

N\

Building a Dictionary w/ a Hash Table -(&g

» (J: What is the problem with this!
» Remember that |Y|<|X]
» (here |X| denotes size of X)
» ...s0 some keys In X will be hashed to the same location!
» this is called the pigeonhole principle
» there just isn't enough room Iin Y to fit all of X

» ...therefore some values in array will be overwritten

» this Is called a collision

b7

Overcoming Collisions

» Hash Table with Chaining

» store multiple values at each array location

» each array cell stores a “bucket” of pairs

» can Implement bucket as a list or expandable array or ...

G S R R
Vo Sl T T
(<7 | T o R i [O P FYI: there are many
blectss 1 1 —1 H /1 — other approaches
(1| o ! D | | s e.g., linear probing,

quadratic probing,
cuckoo hashing,. ..

515

Hash lable

table: array

h: hash function

function add(k, v): 0(l) if computing

index = h(k) < hash function
table[index].append(k, V) is O(1)

function get(k):
index = h(k) et s

: : depends on
) 4
for (key, val) 1n table[index]: bicko i

1f key =

return val
error(“key not found”)

36

Hash Table

» Let's do another example but with Chaining!

» We'll use the following hash function

» h(banner i1d)=banner i1d % 7

B

Hash lable

keys: banner IDs
values: names

Add

00943855 R
Kalla Jeter “\h (rey)=key °7',/
0074591 | S s
Chantal Toupin s Seyel
CO3BAAL i I
Alejandro XA “u
Molina AR
‘(" "l' ~‘~~~~'A

00472885 R
David Laidlaw,*’ A

’(" 4"
00231924 e
Lauren Ho faes

00543163 e
Surbhi Madan ¥

38

Array of buckets w/
key/value pairs

00472885 00231924
David Laidlaw Lauren Ho
00943855

Kalla |eter

00238494

Alejandro Molina

GeErsEAlS 00543163
Chantal Toupin Surbhi Madan

Hash Table Get

keys: banner IDs

Array of buckets w/
key/value pairs

values: names
Bt | A4 00472885 00231924
David Laidlaw L auren Ho
h (key)=key%
00543163 «_
ol , [00943855
S Kalla Jeter
00238494
el Segim Alejandro Molina
0074591 00543163
A
*~T |Chantal Toupin| > |Surbhi Madan
What is the
worst=case
run time of Get?

5%

Hash lable with Chaining

» What Is the worst-case runtime of Get!
» = size of largest bucket
» What is the size of largest bucket!
» assume we have n students and a table of size m

» It h “spreads’” keys roughly evenly then

» each bucket has size = n/m

» ex:If n=150 and m=7 each buckets has size = 150/7 = 21
» But what Is the size of the largest bucket asymptotically?

» assume m is a constant (l.e., it does not grow as a function of n)

» each bucket hassize= n/m = n/c = O(n) @

40

Q:Can we do better than O(n)!

Beating O(n) — Idea #1 @

» lIdea: use large table
» Banner IDs have 8 digits so max 1D 1599,999,999

» Use table of sizem=100,000,000
» w/ hash function h (key)=key

» Are there any collisions In this case!

» no collisions because every pair gets its own cell

» What is run time of Get!

» O(1) since we don't need to scan buckets

v

What is the problem with this approach?

» what If we only store 150 students! we're wasting 99,999, 850 cells

i

Beating O(n) — Idea #2

Idea: use a table of size equal to the number of students + “good” hash function

v

» set the table size to m=n

» use a hash function h that spreads keys well

N/

No wasted space sincen = m

» In other words, ‘table size” = “number of students”

v

It h spreads keys roughly evenly then each bucket has size
» = n/m = n/n =1 = 0(1)

What hash function should we use!

v

» Suppose n 150 (1.e., we want to insert 150 students)

» should we use the hash function h(key) = key % 150/

455

Beating O(n) — ldea #2

» |dea #2 relied on an assumption:

» Iif h spreads keys roughly evenly then each bucket has size

» = n/m = n/n =1 = O(1)
» Willh(ID)=ID%11 spread banner IDs evenly!
» It depends on the banner [Ds...
» It banner |Ds are chosen randomly then Yes

» But what If next year all banner IDs are multiples of 117

» Then all banner [Ds will map to 0!
» So there will be one bucket with all [Ds

» so worst-case runtime of Get will be O(n)

44

Since keys are not necessarily random, we
make the hash function random

Universal Hash Functions

» Special “families’” of hash functions
4 UHF E {hl,hZ,...,hq}

» designed so that If we pick a function from the family at random
and use It on a set of keys, then It Is very likely that the function will
“spread’ the keys (roughly) evenly

Z s S~

~ g
~y -ﬂ
.---

46

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 18, 143-154 (1979)

Universal Classes of Hash Functions

J. LAWRENCE CARTER AND MARK N. WEGMAN

IBM Thomas |. Watson Research Center, Yorktown Heights, New York 10598
Received August 8, 1977; revised August 10, 1978

This paper gives an input independent average linear time algorithm for storage and
retrieval on keys. The algorithm makes a random choice of hash function from a suitable
class of hash functions. Given any sequence of inputs the expected time (averaging over all
functions in the class) to store and retrieve elements is linear in the length of the sequence.
The number of references to the data base required by the algorithm for any input is
extremely close to the theoretical minimum for any possible hash function with randomly
distributed inputs. We present three suitable classes of hash functions which also can be
evaluated rapidly. The ability to analyze the cost of storage and retrieval without worrying
about the distribution of the input allows as corollaries improvements on the bounds of
several algorithms.

Example of Universal Hash Functions

» Setup to store n key/value pairs
» choose prime p larger than n

» choose 4 numbers ai, as,
as, as at random between 0
and p-1

» Hashing a key k
» break k into 4 parts
» K1, k2, k3, ks

enput..

h(k) =) a;-k; mod p

il

48

» Setup to store 150 students
» choose p=151

» choose ai1=12, a»=43,
asz=105, az=83

» Hashing a key k=00238918

» break k into k1=00, k=23,
k3=89, k4=18

P LB
h(00238918) = 50

Hasnh lable with UHFsS

» Hash table w/ chaining using a universal hash function family
» Worst-case runtime of Getis O(n) @
» But UHFs guarantee that worst-case happens very rarely
» We can "expect” that Get will have runtime O (1)
» What do we mean by expect!
» remember that with UHFs we picked one function from family at random

» In example we picked the values (a1, a2, a3, as) at random

N\

but for some functions in the family, keys will be well-spread & for others keys may
be clustered

v

but If we were to compute the runtime of Hash Table with h a million times, where
each time we sample a hash function at random from the family...

v

...then the average of those runtimes would be O (1)

v

This is called “expected running time”

255

Hasnh lable with UHFsS

» Hash table w/ chaining using a universal hash function family
» We can “expect” that Get will have runtime O(1)
» What do we mean by expect!
» remember that with UHFs we picked one function from family at random

» In the example we picked the values (a1, a2, as, as) at random

» for some functions In the family, keys will be well-spread...

v

...while for others keys will be poorly spread, e.g., all mapped to same value

v

but If we were to compute the runtime of Hash Table with a million times,
where each time we sample a hash function at random from the family...

A 4

...then the average of those runtimes would be O (1)

v

This is called “expected running time”

50

Why does Universal Hashing VWork?

» See Chapter 1.5.2 in Dasgupta et al.

» and/or read the proof in lecture slides

» You do not need to know the proof!

57

Summary

» Array-based Dictionaries
» Add Is worst-case O(n)

» Get Is worst-case O(n)
» Hash lable-based Dictionaries with UHFs
» Add is
» worst-case O(n) but expected O (1)
» Get s

» worst-case O (n) but expected O(1)

o

()
Oo what can we builld from dictionaries!
NG/

A (Basic) Search Engine

» Build a dictionary that maps keywords to URLs

» guery dictionary on keyword to retrieve URLs

» In context of search engines

» the dictionary is often called an Index

o7

A (Basic) Search Engine

» Fora each keyword word w/ a list of relevant URLs urli,..,urly
» store the pairs(word |1, urli),.., (word|m, urlp) inadict Index
» where"|"is string concatenation
» Store the pair (word, m) in an auxiliary dictionary Counts
» Jo search for a keyword Brown
» retrieve the count for Brown by querying Count.get (Brown)
» to recover URLs, query Index on keys Brown |1,..,Brown |m

» Index.get(word|1l),..,Index.get(word|m)

i |dea from Cash et al., NDSS ‘|4

Builld Index

function build index(page list):
index = dict()
counts = dict ()
for page in page list:
for word in page:
try:
count = counts.get(word)

except KeyError:
counts.put (word, 0)
count = counts.get(word)
counts.put(word, counts[word] + 1)
key = word + str(counts.get(word))
index.put(key, page.url)
return index

» build_index I1s O (nm) time

» where n Is number of pages and m Is maximum number of words per page

o |dea from Cash et al., NDSS ‘|4

Search Index

def search index(index, word):
output list = list()
count = 1
while True:
try:

url = index.get(word + str(count))
count = count + 1

except KeyError:
break
output list.append(url)

return output list

» It dictionary Is implemented with hash table

» search_index Is expected O(1) time

» fast no matter how many pages and words

57

A (Basic) Search Engine

» What's missing from our “'search engine’?
» No ranking

» But we'll learn how to rank later in the course

» ...after we learn about graphs

58

Sets

» Collection of elements that are

» distinct and unordered

» ...unlike lists and arrays

Set AD T

>

4

>

add(object):
» adds object to set If not there
remove(object):

» removes object from set If there

boolean contains(object):

» checks If object is In set

» int size()
» returns number objects In set

» boolean isEmpty():

» returns TRUE If set 1s empty;
FALSE otherwise

» list enumerate():

» returns list of objects In set (I
arpbitrary order)

Set Data Structure

» How can we implement a Set?

» Using an expandable array

» add: O (1)
» contains: O (n) (scan array)

» remove: 0(n) (find & compress)

» Can we do better?

6|

Sets from Hash Tables

» We can implement sets with a hash table

» Sometimes called a Hash Set

function add(object):

index = h(object) Expected O(1)
table[1ndex].append(object)

function contains(object):

index = h(object)
for elt in table[index]: Expected O(1)
1f elt == object:

return true

return false

62

HashMap vs. HashSet

» HashMap, Python dictionaries

» Hash table implementation of a dictionary

» HashSet, Python sets

» Hash table implementation of a set

63

