Expanding Stacks & Queues

CS16: Introduction to Data Structures & Algorithms
Summer 2021
Outline

- Abstract data types
- Stacks
 - Capped-capacity
 - Expandable
- Amortized analysis
- Queues
 - Expandable queues
Abstract Data Types

- Abstraction of a data structure
- Specifies “functionality”
 - type of data stored
 - operations it can perform
- Like a Java interface
 - Specifies name & purpose of methods
 - But not implementations
- Think of lists: can have ArrayLists or LinkedLists
Stacks

- Stores arbitrary objects
- Operations
 - **Push**: adds object
 - **Pop**: returns *last* object
 - LIFO: last-in first-out
- Can be implemented with
 - Linked lists, arrays, …
Stack ADT

- **push**(object)
 - inserts object

- **object pop**()
 - returns and removes last inserted object

- **int size**()
 - returns number objects in stack

- **boolean isEmpty**()
 - returns **TRUE** if empty; **FALSE** otherwise
Capped-Capacity Stack

- Array-based Stack
 - Stores objects in array
 - keeps pointer to last inserted object
- Problem?
 - Size of the stack is bounded by size of array :-(

Capped-Capacity Stack

Stack(): data = array of size 20
count = 0

push(object):
- if count < 20:
 - data[count] = object
 - count++
- else:
 - error(“overfull”)

size():
- return count

isEmpty():
- return count == 0

pop():
- if count == 0:
 - error(“empty stack”)
- else:
 - count--
 - return data[count]
Expandable Stack

- Capped-capacity stack is fast
 - but—what if we don’t know how many items?
- How can we design an *uncapped* Stack?
- Remember—arrays can’t be resized
 - “resize”—copy contents of size N array to size N’ array
Expandable Stack

- **Strategy #1:** Incremental
 - increase size of array by constant e when full

- **Strategy #2:** Doubling
 - double size of array when full
Expandable Stack

Stack():
 data = array of size 20
 count = 0
 capacity = 20

function push(object):
 data[count] = object
 count++
 if count == capacity
 new_capacity = capacity + e /* incremental */
 = capacity * 2 /* doubling */
 new_data = array of size new_capacity
 for i = 0 to capacity - 1
 new_data[i] = data[i]
 capacity = new_capacity
 data = new_data

What is the runtime?
Expandable Stack

```
function push(object):
    data[count] = object
    count++
    if count == capacity
        new_capacity = capacity + e /* incremental */
        = capacity * 2 /* doubling */
        new_data = array of size new_capacity
        for i = 0 to capacity - 1
            new_data[i] = data[i]
        capacity = new_capacity
        data = new_data
```

- Runtime when not expanding is $O(1)$ & runtime when expanding is $O(n)$
- When does it expand?
 - after n pushes, where n is capacity of array
Incremental & Doubling

- What are the worst-case runtimes?
 - incremental: $O(n)$
 - doubling: $O(n)$
- But are they really the same?
Incremental & Doubling

Incremental (5)

Doubling

\[\text{Cost} \]

\[\text{Push number} \]

\[O(1) \]

\[O(1) \]

\[O(n) \]

\[O(1) \]

\[O(n) \]
Incremental & Doubling

- Worst-case analysis overestimates runtime
 - for algorithms that are fast most of time…
 - …and slow some of the time
- For these algorithms we need an alternative
 - Amortized analysis!

Measure cost on sequence of calls not a single call!
Towards Amortized Analysis

- For certain algorithms it’s better to measure
 - total running time on sequence of calls
 - instead of measuring on a single call
- $S(n)$: total #calls on sequence of n calls
- **Not runtime on a single input of size $n**
- For a stack
 - $S(n)$: cost push #1 + cost push #2 + … + cost push #n
Amortized Analysis

- Instead of reporting total cost of sequence
 - report cost of sequence \(\text{per call} \)

\[
\frac{S(n)}{n}
\]
Amortized Analysis of Incremental
Expandable Stack

Stack():
 data = array of size 20
 count = 0
 capacity = 20

function push(object):
 data[count] = object
 count++
 if count == capacity
 new_capacity = capacity + e /* incremental */
 = capacity * 2 /* doubling */
 new_data = array of size new_capacity
 for i = 0 to capacity - 1
 new_data[i] = data[i]
 capacity = new_capacity
 data = new_data

Run time depends on count which depends on # of previous pushes
Amortized Analysis of Incremental

- Stack with start capacity $c = 5$
- Expands by $e = 5$
- push 5 items to stack

5th push brings to capacity

- Objects copied to new array of size $c+e = 5+5 = 10$
- Cost per push over 5 pushes?
Amortized Analysis of Incremental

- Stack with start capacity $c = 5$
- Expands by $e = 5$

Is each push $O(1)$?

$$\frac{S(n)}{n} = \frac{c + c}{c} = \frac{5 + 5}{5} = 2$$
Amortized Analysis of Incremental

- What if we push 10 objects?

\[
S(n) = \frac{c + c + e + (c + e)}{n}
\]

1st batch of pushes

1st expansion

2nd batch of pushes

2nd expansion

pushes

expansions

c=5

e=5
Amortized Analysis of Incremental

- What if we push 10 objects?

\[
S(n) = \frac{c + c + e + (c + e)}{n} = \frac{10}{n}\\
= \frac{c + e + c + (c + e)}{10}\\
= \frac{10 + 5 + (5 + 5)}{10}\\
= 2.5
\]

pushes
expansions

c = 5, e = 5
Amortized Analysis of Incremental

\[
\frac{S(10)}{10} = \frac{c + e + c + (c + e)}{10} = \frac{10 + 5 + 10}{10} = \frac{25}{10} = 2.5
\]

\[
\frac{S(15)}{15} = \frac{c + e + e + c + (c + e) + (c + e + e)}{15} = \frac{15 + 5 + 10 + 15}{15} = \frac{45}{15} = 3
\]

\[
\frac{S(20)}{20} = \frac{c + e + e + c + (c + e) + (c + e + e) + (c + e + e)}{20} = \frac{20 + 5 + 10 + 15 + 20}{20} = \frac{60}{20} = 3
\]

\[c=5\]
\[e=5\]
Amortized Analysis of Incremental

\[S(n) = \sum_{i=1}^{n} (c + e) + (c + 2e) + (c + 3e) + \cdots \]

\[= n + c + (c + e) + (c + 2e) + (c + 3e) + \cdots \]

To make things simpler, let's assume

\[e = c \]

\[= n + c + 2c + 3c + 4c + \cdots + \frac{n}{c} \cdot c \]

of expansions

(1 expansion per c (or e) pushes)
Amortized Analysis of Incremental

\[S(n) = n + c + 2c + 3c + \cdots + \frac{n}{c} \cdot c \]

\[= n + c \cdot \left(1 + 2 + \cdots + \frac{n}{c}\right) \]

\[= n + c \cdot \frac{1}{2} \cdot \left(\frac{n}{c} \left(\frac{n}{c} + 1\right)\right) \]

\[= n + \frac{n^2}{2c} + \frac{n}{c} \]

\[= O(n^2) \]

\[\frac{S(n)}{n} = O(n) \]
Amortized Analysis of Incremental

- Summary
 - Total cost of n pushes: $S(n) = O(n^2)$
 - Amortized cost of n pushes: $S(n)/n = O(n)$
Amortized Analysis of Double
Amortized Analysis of Doubling

- Doubling stack with initial capacity $c=5$?

$$\frac{S(n)}{n} = \frac{S(5)}{5} = \frac{5 + 5}{5} = 2$$

$$\frac{S(n)}{n} = \frac{S(10)}{10} = \frac{10 + 5 + 10}{10} = 2.5$$

$$\frac{S(n)}{n} = \frac{S(20)}{20} = \frac{20 + 5 + 10 + 20}{20} = 2.75$$
Amortized Analysis of Doubling

\[S(n) = n + n + \frac{n}{2} + \frac{n}{4} + \cdots + \frac{n}{2^{k-1}} \]

\[= n + n \cdot \left(1 + \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^{k-1}}\right) \]

\[< n + n \cdot 2 \]

\[= 3n \]

Assume:
\[c=2 \]
\[n=2^k \]

\[\frac{S(n)}{n} = O(1) \]
Amortized Analysis

- **Summary for Incremental**
 - Total cost of n pushes: $S(n) = O(n^2)$
 - Amortized cost of n pushes: $S(n)/n = O(n)$

- **Summary for Doubling**
 - Total cost of n pushes: $S(n) = O(n)$
 - Amortized cost of n pushes: $S(n)/n = O(1)$
Amortized Analysis

- Summary for Incremental
 - Total cost of \(n \) pushes: \(S(n) = O(n^2) \)
 - Amortized cost of \(n \) pushes: \(S(n)/n = O(n) \)

- Summary for Doubling
 - Total cost of \(n \) pushes: \(S(n) = O(n) \)
 - Amortized cost of \(n \) pushes: \(S(n)/n = O(1) \)

- In practice: always use doubling
How do we feel about amortized analysis?

- Situations where worst case is most important?
Expandable Queue
Queue ADT

- **enqueue**(object):
 - inserts object

- **object dequeue():**
 - returns and removes first inserted object

- **int size():**
 - returns number objects in queue

- **boolean isEmpty():**
 - returns TRUE if empty; FALSE otherwise
Expandable Queue

- Can be implemented with expandable array
 - need to keep track of head and tail
Expandable Queue

- Can be implemented with expandable array
 - need to keep track of head and tail
Expandable Queue

- Can be implemented with expandable array
 - need to keep track of head and tail
Expandable Queue

- Can be implemented with expandable array
 - need to keep track of head and tail
Expandable Queue

- Can be implemented with expandable array
 - need to keep track of head and tail
- What happens when tail reaches end?
 - Is the queue full?
- So when should we expand array?
Expandable Queue

- Wrap around until array is completely full
- When expanding re-order objects properly
Expandable Queue

function **enqueue**(object):
 if size == capacity
 double array and copy contents
 reset head and tail pointers
 data[tail] = object
 tail = (tail + 1) % capacity
 size++

function **dequeue**():
 if size == 0
 error("queue empty")
 element = data[head]
 head = (head + 1) % capacity
 size--
 return element

\[
\frac{S(n)}{n} = O(1)
\]