CXpanding
Stacks & Queues

CS16: Introduction to Data Structures & Algorithms
Summer 202 |

Outline

» Abstract data types

» Stacks

» Capped-capacity
» Expandable
» Amortized analysis
» Queues

» Expandable queues

Abstract Data lypes

» Abstraction of a data structure

» Specifies “functionality”
» type of data stored
» operations It can perform
» Like a Java interface
» Specifies name & purpose of methods
» But not implementations

» Think of lists: can have Arraylists or LinkedLists

3

Stacks

» Stores arbitrary objects

» Operations
» Push: adds object
» Pop: returns last object
» LIFO: last-in first-out

» Can be implemented with

» Linked lists, arrays, ...

Stack AD T

» push(object)

» Inserts object

» object pop()

» returns and removes last inserted object
int size()

» returns number objects In stack
» boolean isEmpty()

» returns TRUE If empty; FALSE otherwise

5

Capped-Capacity Stack

» Array-based Stack

» Stores objects In array

» keeps pointer to last inserted object
» Problem!?

» Size of the stack 1s bounded by size of array :-(

Capped-Capacity Stack

0(1)
Stack(): function size():
data = array of size 20 return count
count = 0(1l)

function isEmpty()
return count == 0

function pop():
1f count ==
error (“empty stack”)

function push(object):
1f count < 20:
data[count] = object
count++
else:

else:
count-—-
return data[count]

error(“overfull”)
O0(1)

0(1)

Expandable Stack (O3

» Capped-capacity stack s fast

» but—what if we don’t know how many rtems?
» How can we design an uncapped Stack!
» Remember—arrays can't be resized

» “resize’'—copy contents of size N array to size N
array

Expandable Stack (™

» Strategy #1: Incremental
» INnCrease size of array by constant e when full

» Strategy #2: Doubling

» double size of array when full

Expandable Stack (O3

Stack():

data = array of size 20 : :)
count = What Is the runtime:

capacity = 20

function push(object):
data[count] = object
count++
1f count == capacity

new capacity = capacity + e /* incremental */

= capacity * 2 /* doubling */
new data = array of size new capacity
for 1 = 0 to capacity - 1
new data[1] = data[1]
capacity = new capacity
data = new data

Fxpandable Stack (O3

function push(object):
data[count] = object
count++
1f count == capacity

new capacity = capacity + e /* incremental */

= capacity * 2 /* doubling */
new data = array of size new capacity
for 1 = 0 to capacity - 1
new data[1] = data[1]
capaclity = new capacity

data = new data
» Runtime when not expanding is O (1) & runtime when expanding is O (n)
» When does it expand!
» after n pushes, where n Is capacity of array

Incremental & Doubling

» What are the worst-case runtimes?
» Incremental: O (n)
» doubling: O (n)

» But are they really the same!

Incremental & Doubling

50

40

30

20

10

Incremental (5)

50

Doubling

40

30

20 X
10 X
........... R e
0 AKX [KRKHKHK HKAAKAKAKAKKKK HKAHAHKAHKAHKAKAKRKHKHKHKHKAHKAHKAKKKXX
OT 10 20 30
O(.) Push nhumb
O(n)

Incremental & Doubling

» VVorst-case analysis overestimates runtime
» for algorithms that are fast most of time...
» ...and slow some of the time

» For these algorithms we need an alternative

» Amortized analysis!

Jowards Amortized Analysis

» For certain algorithms it's better to measure
» total running time on sequence of calls
» Instead of measuring on a single call
» S(n):total #calls on sequence of n calls
» Not runtime on a single input of size n

PR 4 stack

» S(n):cost push #1 + cost push #2 + ... + cost push #n

Amortized Analysis

» Instead of reporting total cost of sequence

» report cost of sequence per call

S(n)

4ot

Amortized Analysis of Incremental

Fxpandable Stack (o8

Stack(): Run time depends on
data = array of size 20 count which depends on
count = # of previous pushes

capacity = 20

function push(object):
data[count] = object
count++
1f count == capacity
new capacity = capacity + e /* incremental */
= capacity * 2 /* doubling */

new data = array of size new capacity

for 1 = 0 to capacity - 1

new data[1] = data[1]
capacity = new capacity
data = new data

Amortized Analysis of Incremental

4

4

4

A

Stack with start capacity ¢ = 5
~xpands by e = 5

bush 5 items to stack

» 5th push brings to capacity

» Objects copled to new array of size c+te = 5+5

10

» Cost per push over 5 pushes!

5

Amortized Analysis of Incremental

» Stack with start capacity ¢ = 5

> Expandsbye = 5

A

e ct+c O+)5 s each push
e - ,
. 0(1):

pushes expanSIon
20

Amortized Analysis of Incremental

» What If we push 10 objects?

S(n) |e+et+e+(cte

A A

e b
Ist batch of pushes
Ist exbansf,ion
2nd batch of pushes

pushes .
2nd expansion

expansions

21

Amortized Analysis of Incremental

» What If we push 10 objects?

NOBE o o W
10
B
- 10
- 10+5+(5+5)

pushes
s -

)

expansions

Amortized Analysis of Incremental

S(10) - 10+5+10 25

e e —
10 10 10 10
S5 N - >+5+10+15 45 L
S 15 i 15 b
S(20)
pushes 20 .

expansions

25

Amortized Analysis of Incremental

Sn) =g e+ c+(c+e)+(c+2e)+(c+3e)+...

=nm+c+(c+e)+(c+2e)+(c+3e)+...

To make things simpler, let's assume

e = C

n

=Stk et 2¢t3c+4dc+ ... +—-¢c
C

v,

of exfa‘ansions
(1 expansion per c (or) pushes)

L

Amortized Analysis of Incremental

n pushes
cost of exp. # n/c

‘4

Sl 1L 2c¢+3ct 1
n

4
L 4
A¢

<----factoring out c

o
\./Q|§

T (ﬁ (E . 1)) <----using:

2 C NC (1+2+---+k):k°(k+1)
n‘/c+n :

= <---- distributing

2 & simplifying:
= O(n?

(n”) Sm)
= 0O(n)
n

i

Amortized Analysis of Incremental

» Summary
» Jotal cost of n pushes: S(n) = 0(n2)

» Amortized cost of n pushes: S(n)/n = O(n)

26

Amortized Analysis of Double

Amortized Analysis of Doubling

4

Doubling stack with initial capacity ¢=5¢

_cost of pushes

S(n) 5(5) S e i cost of exp

S(n) _ 5(10) _ 10+5+10 *7" -
0 10 e

<---- cost of exp
S(n) _ S(20) _ 20+5+10+20 17 SOSE
n 20 20

28

Amortized Analysis of Doubling

cost of second

cost of n pushles cgst of lastexp ..--~ to last exp
VA e Pl
o Vg) i peasacs cost of exp #I
1 1 1
k
L T S A A N s L using:| |im e,
k— o0 4 L
= 3N o
Assume; S(n)
c=2 n e 0(1)
n=2k

i

Amortized Analysis

» Summary for Incremental

» Jotal cost of n pushes: S(n) = 0(n2)

» Amortized cost of n pushes: S(n)/n = O(n)
» Summary for Doubling

» Jotal cost of n pushes: S(n) = O(n)

» Amortized cost of n pushes: S(n)/n = 0O(1)

30

Amortized Analysis

» Summary for Incremental

» Jotal cost of n pushes: S(n) = 0(n2)

» Amortized cost of n pushes: S(n)/n = O(n)
» Summary for Doubling

» Jotal cost of n pushes: S(n) = O(n)

» Amortized cost of n pushes: S(n)/n = 0O(1)

» In practice: always use doubling

3

How do we feel about amortized analysis?

» Situations where worst case I1s most important!

B

Expandable Queue

Queue AD T

» enqueue (object):

» Inserts object

» object dequeue()

» returns and removes first inserted object

e s1zZe()

» returns number objects In queue

» boolean isEmpty()

» returns TRUE If empty; FALSE otherwise

b7

xpandable Queue

|

head
tail
» Can be implemented with expandable array

» need to keep track of head and tall

515

xpandable Queue

il

head tail

» Can be implemented with ex

handable array

PR Cdiiekeep lirdcik of heac

36

and tall

xpandable Queue

T

head tail

» Can be implemented with expandable array

» need to keep track of head and tall

B

xpandable Queue

|

head tail

» Can be implemented with ex

handable array

PR Cdiiekeep lirdcik of heac

38

and tall

xpandable Queue

| T

head tail

» Can be implemented with expandable array

» need to keep track of head and tall
» What happens when taill reaches end?
RN queue full?

» SO when should we expand array?

57

xpandable Queue

T |

tail head

» Wrap around until array is completely full

» When expanding re-order objects properly

40

xpandable Queue

function enqueue(object):
1f size == capacity
double array and copy contents

reset head and tail pointers
data[tail] = object
tail = (tail + 1) % capacity

size++

function dequeue():
1f size ==
error (“queue empty”)
element = data[head]
head = (head + 1) % capacity
size--
return element

