Recursion, Induction, Dynamic Programming

CS I 6: Introduction to Algorithms & Data Structures
Summer 202 I

Outline

- Recursion
- Recurrence relations
- Plug & chug
- Induction
- Strong vs. weak induction

Collaboration policy

- Can and should discuss assignments with other students!
- Still cannot share code or written solutions

The Scouting Problem

recursive: defined in terms of itself

Recursion

- What is a recursive problem?
 - a problem defined in terms of itself
- What is a recursive function?
 - > a function defined in terms of itself
 - example: Factorial, Fibonacci
- At each level, the problem gets easier/smaller

Recursive Algorithms

- Algorithms that call themselves
 - Call themselves on smaller inputs (sub-problems)
 - Combine the results to find solution to larger input
- Recursive algorithms
 - Can be very easy to describe & implement :-)
 - Especially for recursively-defined data structures (e.g. trees)
 - Can be hard to think about and to analyze :-(

Factorial

iterative:
$$n! = \prod_{i=1}^{n} i = n \times (n-1) \times \cdots \times 1$$

recursive:
$$n! = n \times (n-1)!$$
, with $1! = 1$

```
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

call factorial(3)

```
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call factorial(3)
 - ▶ level #1: $3 \neq 1$ so $3 \times factorial(2)$

```
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call factorial(3)
 - ▶ level #1: $3 \neq 1$ so $3 \times factorial(2)$
 - level #2: 2≠1 so 2 x factorial(1)

```
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call factorial(3)
 - ▶ level #1: $3 \neq 1$ so $3 \times factorial(2)$
 - level #2: 2≠1 so 2 x factorial(1)
 - ▶ level #3: 1==1 so return 1

```
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call factorial(3)
 - ▶ level #1: $3 \neq 1$ so $3 \times factorial(2)$
 - level #2: 2≠1 so 2 x 1
 - ▶ level #3: 1==1 so return 1

```
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call factorial(3)
 - level #1: 3≠1 so 3 x 2
 - level #2: 2≠1 so 2 x 1
 - ▶ <u>level #3</u>: 1==1 so return 1

```
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- \rightarrow call factorial(3) = 6
 - - level #2: 2≠1 so 2 x 1
 - ▶ level #3: 1==1 so return 1

Wait a minute!!

you keep calling factorial but never actually implemented it

```
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

```
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

Example: recursive array_max

```
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Example: recursive array_max

```
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

```
array_max([5,1,9,2], 4) = [9]

max(2, array_max([5,1,9,2],3) = [9])

max(9, array_max([5,1,9,2],2) = [5])

max(1, array_max([5,1,9,2],1) = [5])
```

Running Time of Recursive Algos

- Difficult to analyze :-(
- With iterative algorithms
 - we can count # of ops per loop
- ▶ How can we count # ops in a recursive step?
 - We can't...

```
def factorial(n):
    out = 1
    for i in range(1, n+1):
        out = i * out
    return out
```

```
def factorial(n):
   if n == 1:
     return 1
   else:
    return n * factorial(n-1)
```

Recurrence Relations

Functions that express run time recursively

$$T(n) = 2 \cdot T(n-1) + 10$$
, with $T(1) = 8$ general case base case

- part I: # of operations in general case
- part 2: # of operations in base case

Example: recursive array_max

```
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

$$T(n) = T(n-1) + c_1$$
, with $T(1) = c_0$ base case

What about Big-Oh?

- general: constant # ops for comp & max + cost of recursive call
- base: constant # ops for comp and return

Big-O from Recurrence Relation

- Step #1: Plug & Chug
 - algebraic manipulations to guess a Big-O expression
- Step #2: Induction
 - prove that Big-O expression is correct

Example: recursive array_max

$$T(n) = T(n-1) + c_1$$
, with $T(1) = c_0$ general case base case

Plug & Chug

$$T(n) = T(n-1) + c_1$$
, with $T(1) = c_0$ base case

$$T(1) = c_0$$

$$T(2) = c_1 + T(1) = c_1 + c_0$$

$$T(3) = c_1 + T(2) = c_1 + c_1 + c_0 = 2c_1 + c_0$$

$$T(4) = c_1 + T(3) = c_1 + 2c_1 + c_0 = 3c_1 + c_0$$

$$T(5) = c_1 + T(4) = c_1 + 3c_1 + c_0 = 4c_1 + c_0$$

$$\vdots$$

$$T(n) = c_1 + T(n-1) = \dots = \dots = (n-1)c_1 + c_0$$

Closed form expression

$$T(n) = (n-1) \cdot c_1 + c_0 = O(n)$$

Are we done?

- That was just a guess...not a proof!
 - plugged & chugged to find a pattern
 - and then we guessed at a Big-O
- ▶ How can we be sure?
- We prove it using Induction

Induction

- Proof technique to prove statements about infinite sets of natural numbers
 - Can also be used for recursively-defined structures like trees
- To prove that a statement P is true for all positive numbers n=1,2,3,4,...
 - ▶ prove that a statement P is true for n=1
 - prove that if P is true for n=k then P is true for n=k+1

Steps to an Inductive Proof

- Base case
 - prove that statement P is true for base case
- Inductive hypothesis
 - ightharpoonup assume that ightharpoonup is true for some case ightharpoonup = ightharpoonup
- Inductive step
 - prove that if **P** is true for n = k then **P** is true for n = k+1
- Conclusion
 - Then P must be true for all n

Induction

Inductive step:

Base case:

Induction for array_max

▶ **P**(n): $T(n) = T(n-1) + c_1$, w/ $T(1) = c_0$ is equal to $f(n) = (n-1) \cdot c_1 + c_0$

- ▶ Prove for base case: n=1
 - $T(1) = c_0 \text{ and } f(1) = (1-1) \cdot c_1 + c_0 = c_0$
- ▶ Inductive assumption: n=k
 - assume T(k) = f(k)
- Inductive step: $T(k+1) = T(k) + c_1$ = $(k-1) \cdot c_1 + c_0 + c_1$ = $k \cdot c_1 + c_0 = f(k+1)$

Induction Example #2

$$\mathbf{P}(\mathbf{n}): A(n) = \sum_{i=1}^{n} 2i \text{ is equal to } f(n) = n \cdot (n+1)$$

- \triangleright Base case: n = 1
 - $A(1) = 2 \text{ and } f(1) = 1 \cdot (1+1) = 2$
- ▶ Inductive assumption: n=k

$$\sum_{i=1}^{n} 2i = k \cdot (k+1)$$

i=1
 Inductive step

$$A(k+1) = \sum_{i=1}^{k+1} 2i \qquad \dots = \frac{k \cdot (k+1) + 2 \cdot (k+1)}{= (k+1) \cdot (k+2)}$$
$$= \sum_{i=1}^{k} 2i + 2 \cdot (k+1) \qquad = f(k+1)$$

Another Induction Example

$$\mathbf{P}(\mathbf{n}): \ A(n) = \sum_{i=1}^{n} i \ \text{ is equal to } f(n) = \frac{n \cdot (n+1)}{2}$$

- ▶ Prove base case: n=1
 - A(1) = 1 and $f(1) = \frac{1 \cdot (1+1)}{2} = 1$
- ▶ Induction assumption: n=k
 - A(k) = f(k) which means $\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}$
- Prove induction step!

Another Induction Example

Prove induction step

$$A(k+1) = \sum_{i=1}^{k+1} i$$

$$= \sum_{i=1}^{k} i + (k+1)$$

$$= \frac{k \cdot (k+1)}{2} + (k+1)$$

$$= \frac{k \cdot (k+1)}{2} + \frac{2 \cdot (k+1)}{2} \longrightarrow \times \frac{2}{2}$$

$$= \frac{(k+1) \cdot (k+2)}{2} \longrightarrow \text{factor out } (k+1)$$

$$= f(k+1)$$

Strong vs. Weak Induction

- Weak induction
 - \blacktriangleright induction step assumes statement is true for n=k and
 - proves statement is true for n=k+1
- Strong induction
 - induction step assumes statement is true for n=1,2,...,k
 - ▶ and proves true for n=k+1
- Strong vs. weak refers to assumption
 - not strength of proof

Strong vs. Weak Induction

Weak:

Strong:

Dynamic programming

Factorial, again

```
def factorial(n):
   if n == 1:
        return 1
   else:
        return n * factorial(n-1)
```

- T(1) = c0
- T(n) = cI + T(n-I)
- What's the big-O runtime? O(n)

Fibonacci

Defined recursively

$$F_0 = 0, F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2}$$

0,1,1,2,3,5,8,13,21,34,...

Fibonacci (Recursive)

```
function fib(n):
    if n = 0:
        return 0
    if n = 1:
        return 1
    return fib(n-1) + fib(n-2)
```

- T(0) = c0
- T(1) = c1
- T(n) = c2 + T(n-1) + T(n-2)
- What's the big-O runtime?

Fibonacci (Recursive)

```
function fib(n):
    if n = 0:
        return 0
    if n = 1:
        return 1
    return fib(n-1) + fib(n-2)
```


- How many time
 - ▶ 8 times
- At each level it
 - For fib(n)

On my computer, computing the 60th Fibonacci number takes ~2 days

Computing 60! is ~instantaneous

▶ Algorithm is O(2ⁿ)

Dynamic programming to the rescue!

What is Dynamic Programming?

- Algorithm design paradigm/framework
 - Design efficient algorithms for optimization problems
- Optimization problems
 - "find the best solution to problem X"
 - "what is the shortest path between u and v in G"
 - "what is the minimum spanning tree in G"
- Can also be used for non-optimization problems

When is Dynamic Programming Applicable?

- Condition #1: sub-problems
 - The problem can be solved recursively
 - Can be solved by solving sub-problems
- Condition #2: overlapping sub-problems
 - Same sub-problems need to be solved many times
- Core idea
 - solve each sub-problem once and store the solution
 - use stored solution when you need to solve sub-problem again

Steps to Solving a Problem w/ DP

- What are the sub-problems?
- What is the "magic" step?
 - Given solutions to sub-problems...
 - ...how do I combine them to get solution to the problem?
- In which order should I solve sub-problems?
 - so that solutions to sub-problems are available when I need them
- Design iterative algorithm
 - that solves sub-problems in right order and stores their solution

- Given n compute
 - Fib(n) = Fib(n-1)+Fib(n-2)
 - with base cases Fib(0) = 0 and Fib(1) = 1
- What are the sub-problems?
 - ▶ Fib(n-1), Fib(n-2), ..., Fib(1), Fib(0)
- What is the magic step?
 - Fib(n) = Fib(n-1)+Fib(n-2)

Magic step is usually not provided!!

- In which order should I solve sub-problems?
 - Fib(0), Fib(1), ..., Fib(n-1), Fib(n)

Design iterative algorithm

```
function Fib(n):
    fibs = []
    fibs[0] = 0
    fibs[1] = 1

for i from 2 to n:
        fibs[i] = fibs[i-1] + fibs[i-2]

return fibs[n]
```

- What's the runtime of dynamicFib()?
 - ▶ Calculates Fibonacci numbers from 0 to n
 - ▶ Performs O(1) ops for each one
 - ▶ Runtime is O(n)
- We reduced runtime of algorithm
 - From exponential to linear
 - with dynamic programming!

Seams

Finding Low Importance Seams

- ▶ Idea: remove seams not columns
 - (vertical) seam is a path from top to bottom
 - that moves left or right by at most one pixel per row

Finding Low Importance Seams

- How many seams in a **c×r** image?
 - At each row the seam can go Left, Right or Down
 - It chooses 1 out of 3 dirs at all but last row r
 - ▶ So about 3r-1 seams from some starting pixel
 - There are c starting pixels so total number of seams is
 - ▶ about c×3r-1
- For square nxn image
 - ▶ there are about n3ⁿ⁻¹ possible seams

Finding Low Importance Seams

- Brute force algorithm
 - Try every possible seam & find least important one
- What is running time of brute force algorithm?
 - ▶ If image is nxn brute force takes about n3n-1
 - ▶ So brute force is $\Omega(2^n)$ (i.e., exponential)

Seamcarve

- What is the runtime of Seamcarve?
- The algorithm
 - Iterate over all pixels from bottom to top
 - Populate costs and dirs arrays
 - Create seam by choosing minimum value in top row and tracing downward
- How many operations per pixel?
 - ▶ A constant number of operations per pixel (4)
- Constant number of operations per pixel means algorithm is linear
 - ▶ O(n) where n is number of pixels

Seamcarve

- How can we possibly go from
 - exponential running time with brute force
 - to linear running time with Seamcarve?
 - What is the secret to this magic trick?

Dynamic Programming!

- What are the subproblems?
 - ▶ lowest cost seam (LCS) starting at is

- Are they overlapping?
 - Yes!
 - ex: LCS() is subproblem of LCS() and LCS()

What is the magic step?


```
min(LCS(), LCS(), LCS())
```

- Which order should I use?
 - to solve LCS problem at cell (i,j)
 - we need to have solved problem at cells below

- Algorithm
 - compute cost of LCS for each cell going bottom up
 - store cost of LCS in an auxiliary 2D array...
 - ...so we can reuse them

$$Cost(\square)=Val(\square)+min(Cost(\square),Cost(\square),Cost(\square))$$

- Problem
 - Costs array only gives us cost of LCS at cell
 - We need the seam. What happened?
 - We used

$$Cost(\square)=Val(\square)+min(Cost(\square),Cost(\square),Cost(\square))$$

▶ But recall that at "seam level" we had

$$LCS(\square) = \square$$
 min($LCS(\square)$, $LCS(\square)$), $LCS(\square)$)

- ▶ It's OK!
 - We can keep track of minimum LCS
 - at each step in auxiliary structure Dirs

Readings

- Induction handout on course page
 - http://cs.brown.edu/courses/cs016/static/files/docs/ induction.pdf