Recursion, Inauction,
Dynamic Programming

CS16: Introduction to Algorithms & Data Structures
Summer 202 |

Outline

» Recursion

» Recurrence relations
» Plug & chug
» [Induction

» Strong vs. weak Induction

Collaboration policy

» €Can and should discuss assignments with
other students!

» Still eannot share code or written solutions

The Scouting Problem

UsS

B
RI [NY [CA | IN [_
B . 8 6 =B . »

Pvd NP NYC Buff. SF Ind. Gary

recursive: defined in terms of itself

Recursion

» What Is a recursive problem!?
» a problem defined In terms of rtself
» What Is a recursive function!?
» a function defined In terms of rtself
» example: Factorial, Fibonacc

» At each level, the problem gets easier/smaller

Recursive Algorithms

» Algorithms that call themselves

» Call themselves on smaller inputs (sub-problems)

» Combine the results to find solution to larger input
» Recursive algorithms

» Can be very easy to describe & implement :-)

» Especially for recursively-defined data structures (e.g. trees)

» Can be hard to think about and to analyze -(

Factorial

n

iterative: 1! :Hi:nx (n—1) x---x1
i=1

recursive: n! =n x (n — 1)!, with 1! =1

Recursive Factorial Simulation

def factorial(n):
1f n == 1:
return 1
else:

return n * factorial(n-1)

» call factorial(3)

Recursive Factorial Simulation

def factorial(n):
1f n == 1:
return 1
else:

return n * factorial(n-1)

» call factorial(3)

» level #1: 3#1 so 3 x factorial(2)

Recursive Factorial Simulation

def factorial(n):
1f n ==
return 1
else:

return n * factorial(n-1)

» call factorial(3)

» level #1: 3#1 so 3 x factorial(2)

» level #2: 2#1 so 2 x factorial(1)

Recursive Factorial Simulation

def factorial(n):
1f n
return 1
else:

return n * factorial(n-1)

» call factorial(3)

» level #1: 3#1 so 3 x factorial(2)

» level #2: 2#1 so 2 x factorial(1)

» level #3: 1==1 so return 1

15

Recursive Factorial Simulation

def factorial(n):
1f n ==
return 1
else:

return n * factorial(n-1)

» call factorial(3)

» level #1: 3#1 so 3 x factorial(2)

» level #2: 2#1 so 2 x 1
» lavel #3: 1==1 co retirn 1

7

Recursive Factorial Simulation

def factorial(n):
1f n == 1:
return 1
else:

return n * factorial(n-1)

» call factorial(3)
» level #1: 321 so03 x2

Recursive Factorial Simulation

def factorial(n):
1f n == 1:
return 1
else:

return n * factorial(n-1)

» call factorial(3) = 6
e oo 3 D

Wart a minute!!

you keep cdlling factorial but never actually implemented it

Recursive Factorial Simulation

def factorial(n):
1f n == 1:
return 1
else:

return n * factorial(n-1)

Recursive Factorial Simulation

def factorial(n):
1f n == 1:
return 1
else:

return n * factorial(n-1)

cxample: recursive array max

def array max(array, n):

if n ==
return array[O0]
else:
return max(array[n-1], array max(array, n-1))

20

cxample: recursive array max

def array max(array, n):

return array[O0]
else:
return max(array[n-1], array max(array, n-1))

array max([5,1,9,2]1, 4) = [9]
Lmax(z , array max([5,1,9,21,3) = [9])
Lmax(9, array max([5,1,9,21,2) = [5])
[+»max(1, array max([5,1,9,21,1) = [5])

21

Running Iime of Recursive Algos

» Difficult to analyze :-(
» With rterative algorithms

» we can count # of ops per loop
» How can we count # ops In a recursive step!

» We can't...

def factorial(n): def factorial(n):
out = 1 1f n ==
for 1 in range(l, n+l): return 1

out = 1 * out else:
return out return n * factorial(n-1)

Recurrence Relations

» Functions that express run time recursively

B 2-T(n—1)+10, with T(1) =
SR N

general case base case

» part | # of operations In general case

» part 2: # of operations In base case

25

cxample: recursive array max

def array max(array, n):
1f n ==
return array[O0]

else:
return max(array[n-1], array max(array, n-1))

T'(n)=T(n—1)+c, with T(1)=c¢ What about
e R :
Big-Oh?

general case base case

» general: constant # ops for comp & max + cost of recursive call

» base: constant # ops for comp and return

A

Big-O from Recurrence Relation

» Step #1: Plug & Chug

» algebraic manipulations to guess a Big-O expression

» Step #2: Induction

» prove that Big-O expression Is correct

i

cxample: recursive array max

T(?’L) — T(TL = 1) e A with T(l) — Cp
N—— — | S —

general case base case

26

Plug & Chug

T(1) = ¢,

T(2) = ¢, -
T(3) = ¢, -
T(4) = ¢, -

N\~

Tn)=T(n-—1)

N

general case

o) = =

-T(1) = ¢+ ¢

SR — G R
= I3 = @ ar ey =
-T(4) = ¢y + 3¢y -

e Sk with T(l) — Cp

—

base case

T(n)=cl-+T(n—1) =y

» Closed form expression

CO =2C1—
'CO:3C1‘
-cyp = 4cq -
s (e

Tn)=(Mm—1)-¢c1 +cog=0(n)

L7

e, + ¢

Are we done!

» [hat was just a guess...not a proof!

» plugged & chugged to find a pattern
» and then we guessed at a Big-O

» How can we be sure?

» VWe prove 1t using Induction

28

lInduction

» Proof technique to prove statements about Infinite
sets of natural numbers

» Can also be used for recursively-defined structures
ike trees

» Jo prove that a statement P is true for all positive
pllmeersn=1,2, 3,4,..

» prove that a statement P is true for n=1

» prove that if P is true for n=k then P Is true for
n=k+1

i

Steps to an Inductive Proof

» Base case

» prove that statement P Is true for base case

» Inductive hypothesis

» assume that P Is true forsome casen = k
» Inductive step

» prove that if P istrue forn = kthen Pistrueforn = k+1
» Conclusion

» Then P must be true for all n

30

lInduction

Inductive step:

(&
Base case:

Induction for array max
» P(n): T(n) =T(n—1)+c1, w/ T(1) = ¢ is equal to
f(n)=(n—1)-c1 + ¢
» Prove for base case: n=1
» T(1) =cop and f(1) =(1—=1)-¢1 4+ co = o
» Inductive assumption: n=k
» assume T'(k) =FHf(k)

b Incuctive step: T'(k + 1) =EEEE + c;
:(k—1)°61 1 C1
—k-c1+c¢g :f(k—l—l)

Induction Example #2

P(n): A(n 22@ sequalto f(n)=n-(n+1)

» Base case:n = 1
e 2'and f(1)=1-(1+1)=2

» Inductive assumption: n=k

: ZZz—k (k1)

1=

) \nductwe steE
Zzz .. [- 2 - (k + 1)
C SN 1)
=Z2z'+2-(/~c+1) = f(k+1)

1=1

Another Induction Example

. n-(n+1)

P(n): A(n) = Zz B EelLplie i) = :

7=
» Prove base case: n=1

) — 1 and f(1) = = (1; "

» Induction assumption: n=k

k
» A(k) = f(k) which means Zz’: :
r=1:

— |

- (k+1)
2

» Prove induction step!

D2}

Another Induction Example

» Prove induction step

Ak +1) =

515

k+1

(
i=1 Induction assumption
k
Y i+ (k+1) .
i=1 Zi: (2)
k-(k+1 i=1

(2+ B 1)
k-(k+1) 2-(k+1) ><_2_

2 | 2 %
(k+1)-(k+2)

factor out (k + 1)

Strong vs. Weak Induction

» Weak Induction
» Induction step assumes statement Is true for n=k and
» proves statement Is true for n=k+1
» Strong induction
» Induction step assumes statement Is true for n=1, 2, ..,k

» and proves true for n=k+1

» Strong vs. weak refers to assumption

» not strength of proof

36

Strong vs. Weak Induction

N

/l

Weak:

Strong:

Dynamic programming

-actorial, again

def factorial(n):
1f n == 1:

return 1
else:
return n * factorial(n-1)

» 1(1)=c0
» T(n) =cl +T(n-1)
» What's the big-O runtime’

57

Flbonaccl

» Defined recursively

=0, F1 = 1

FG) FQ)
/\ /" \\
F(2) F(1) F(1) F(0) 0,1,1,2,3,5,8,13,21 3159

40

Fibonaccl (Recursive)

function fib(n):
if n = 0:
return 0

if n = 1:
return 1
return fib(n-1) + f£ib(n-2)

= c0

> =t

i Emir=c) [(n-|) +T(n-2)
» What's the big-O runtime!?

i

Fibonaccl (Recursive)

function fib(n):
if n = 0:
return 0

if n = 1:
return 1
return fib(n-1) + f£ib(n-2)

F(2) F(1) F(1) F(O)

/\

A A F(1) F(0:
On my computer, computing the
60th Fibonacci number takes ~2 days

» How many time
» 3 times

» At each level it
W #AI8® Computing 60! Is ~instantaneous
» Algorithm i1s O (2n)

27

Dynamic programming
to the rescue!

What I1s Dynamic Programming?

» Algorithm design paradigm/framework

» Design efficient algorithms for optimization problems

» Optimization problems
» “find the best solution to problem X"
» “what Is the shortest path between u and v In G”

» “what Is the minimum spanning tree In G”

» Can also be used for non-optimization problems

44

When i1s Dynamic Programming Applicable!

» Condition #1: sub-problems

» [he problem can be solved recursively

» (Can be solved by solving sub-problems
» Condition #2: overlapping sub-problems

» Same sub-problems need to be solved many times

» Core Idea
» solve each sub-problem once and store the solution

» use stored solution when you need to solve sub-problem again

2455

Steps to Solving a Problem w/ DP

v

What are the sub-problems’

v

What I1s the “magic’’ step!
» Given solutions to sub-problems...

» ...how do | combine them to get solution to the problem!?

v

In which erder should | solve sub-problems!?

» 5o that solutions to sub-problems are available when | need them

v

Design iterative algorithm

» that solves sub-problems in right order and stores their solution

46

Fibonaccl (Dynamic Programming)

F(3)

47

Fibonaccl (Dynamic Programming)

» Given n compute
» Fib(n) = Fib(n-1)+Fb(n-2)
» with base cases FIb(0) = 0 and Fib(1) = 1
» What are the sub-problems!
» Fib(n-1), Fib(n-2), ..., Fib(1), Fib(0)
» What Is the magic step! Magic step is

» Fib(n) = Fib(n-1)+Fib(n-2) oo

48

Fibonaccl (Dynamic Programming)

» In which order should | solve sub-problems?

» Fib(0), Fib(1), ...,Fib(n-1), Fib(n)

e

o & =

®/

255

Fibonaccl (Dynamic Programming)

» Design rterative algorithm

function Fib(n):
fibs = []
fibs[0] = 0
fibs[1] 1

for 1 from 2 to n:
fibs[i] = fibs[1-1] + fibs[1-2]

return fibs[n]

50

Fibonaccl (Dynamic Programming)

» What's the runtime of dynamicFib()/
» Calculates Fibonacci numbers from 0 to n
» Performs O(1) ops for each one
» Runtime 1sO(n)

» VWe reduced runtime of algorithm

» From exponential to linear

» with dynamic programming!

57

Seams

Finding Low Importance Seams

e .

» Idea: remove seams not columns
» (vertical) seam Is a path from top to bottom
» that moves left or right by at most one pixel per row

i

Finding Low Importance Seams

» HOw many seams In a CXxr Image!

» At each row the seam can go Left, Right or Down
» |t chooses 1 out of 3 dirs at all but last row r
» S0 about 3r-1 seams from some starting pixel
» [here are ¢ starting pixels so total number of seams s
» about cx3r-1
» FOr sguare nxXn image

» there are about n3n-1 possible seams

o7

Finding Low Importance Seams

» Brute force algorithm

» Iry every possible seam & find least important one
» What is running time of brute force algorithm?
» [T Image Is nxn brute force takes about n3n-1

» So brute force 1s (2 (2r) (1.e., exponential)

)5

Seamcarve

» What Is the runtime of Seamcarve!

» [he algorithm

» [terate over all pixels from bottom to top

» Populate costs and dirs arrays

» Create seam by choosing minimum value In top row and tracing
downward

» How many operations per pixel!
» A constant number of operations per pixel (4)
» Constant number of operations per pixel means algorithm is linear

» O(n) where n I1s number of pixels

56

Seamcarve

» How can we possibly go from
» exponential running time with brute force
» to linear running time with Seamcarve!?

» What Is the secret to this magic trick!

Dynamic

Programming!

57

Designing Seamcarve =

» What are the subproblems?

» lowest cost seam (LCS) starting at [l 1s

[] " min(LCS(IlD), LCS(ID), LCS([__)))

» Are they overlapping?
» Yes!

» ex: LCS() is subproblem of LCS(J) and LCS(|Il)

58

Designing Seamcarve

» What Is the magic step!?

[] " min(LCS(IlD), LCS(ID), LCS([__)))

» Which order should | use!

» to solve LCS problem at cell (1, 7))

» we need to have solved problem at cells below

D)7

Designing Seamcarve

» Algorithm

» compute cost of LCS for each cell going bo

» store cost of LCS in an auxiliary 2D array...

4

...SO We can reuse them

N

Cost(Il)=Val(ll) +min(Cost([), Cost(l), Cost(

60

tom up

)

Designing Seamcarve

» Problem

4

4

4

4

Costs array only gives us cost of LCS at cell

We need the seam.What happened!

VWe used

Cost(Jl)=Val([l) +min(Cost(

But recall that at “'seam level” we had

LCS(H= H min(LCS(

), LCS(HR), LCS(

61

), Cost([), Cost([_]))

)

Designing Seamcarve

» |t's OK!

» We can keep track of minimum LCS

» at each step In auxiliary structure Dirs

62

Readings

» Induction handout on course page

» http://cs.brown.edu/courses/csO | 6/static/files/docs/

induction.pdf

63

http://cs.brown.edu/courses/cs016/static/files/docs/induction.pdf
http://cs.brown.edu/courses/cs016/static/files/docs/induction.pdf

