Online Algorithms and Competitive Analysis

CS16: Introduction to Data Structures & Algorithms
Spring 2019
Outline

1. Motivation
2. The Ski-Rental Problem
3. Experts Problem
4. Dating Problem
Motivation

- We don’t always start off with all the data we want at once
- We want the best algorithms to answer questions about such data
Offline Algorithms

- An **offline algorithm** has access to all of its data at the start – it “knows” all of its data in advance
- Most of what you have done in this class has been offline (or at least given offline)
Online Algorithms

- An *online algorithm* does not have access to all of the data at the start
- Data is received *serially*, with no knowledge of what comes next
- How do you make a good algorithm when you don’t know the future?
Ski-Rental Problem

- You like skiing
- You’re going to go skiing for n days
- You need to decide: Do you rent skis or buy skis?
- Renting:
 - $50 per day
- Buy:
 - $500 once
- Goal: Minimize cost

Maggie hitting the slopes
Ski-Rental Problem (Offline)

- Offline solution:
 - If $n < 10$, rent!
 - Else, buy!

- Tough luck. You don’t know what n is
 - You love skiing so much, you’ll ski as long as you don’t get injured
Ski-Rental Problem – Rent vs. Buy

Total $ $500

Rent

Buy

Time

10 Days

8
Ski-Rental Problem (Offline)

Offline solution is somewhere on the blue line
Ski-Rental Problem (Online)

- We don’t know the future, so what can we do?
- Try to get within some constant multiplicative factor of the offline solution!
 - “I want to spend at most X times the amount the offline solution would spend”
- Strategy:
 - Rent until total spending equals the cost of buying
 - Then buy if we want to ski some more
Ski-Rental Problem (Online)

Total $

$1000

$500

Days

Online solution is somewhere on the purple line
Ski-Rental Problem – Analysis

› How good is this?
 › If we ski 10 days or less, we match the optimal solution!
 › If we ski more than 10 days, we never spend more than twice the offline solution
› This is not the only online solution!
Comparing Solutions

Total $

$500

Online solution

Offline solution

Days

13
How good is this?

- How do we know that our algorithms are “good”, i.e. close to optimal?
- What can we do if we don’t even know what the most optimal algorithm is?
Competitive Analysis

- Analyzing an online algorithm by comparing it to an offline counterpart
- **Competitive ratio**: Ratio of performance of an online algorithm to performance of an optimal offline algorithm

\[
\text{perf online} \leq c \cdot \text{perf offline} + \alpha
\]

- Our ski-rental solution has a competitive ratio of 2, since we are never more than 2 times as bad as the offline solution
- Our online algorithm is “2-competitive” with the offline solution
More than just skis…

- Refactoring versus working with a poor design
- Unrequited love?
The Experts Problem

- Dating is hard
- You know nothing about dating (oops)
- Dating can be reformulated as a series of binary decisions
 - Not “What should I wear?”, but
 - Do I wear these shoes? (yes)
 - Should we go at 7? Should we go at 8? (7)
 - Do I wait 15 minutes to text them back? Or 3 hours? (3)
 - Should I buy them flowers? (no)
The Experts Problem: The Scenario

- You know nothing, so you should ask for help
- You know \(n \) experts who can give you advice before you make each decision (but you don’t know if it’s good)
The Experts Problem

- **Rules**
 - If you make the right decision, you gain nothing
 - If you make the wrong decision, you get 1 unit of embarrassment
 - Total embarrassment = number of mistakes

- **Goal**: Minimize total embarrassment (relative to what the best expert would’ve gotten)
The Experts Problem (Offline)

- Offline:
 - We know the best expert
 - We only listen to them
 - Whatever successes and mistakes they have, we have

- Online:
 - We don’t know the best expert
The Experts Problem (Online)

- Assign every expert a weight of 1, for total weight of $W = n$ across all experts
- Repeat for every decision:
 - Ask every expert for their advice
 - **Weight** their advice and decide by majority vote
 - After the outcome is known, take every expert who gave bad advice and cut their weight in half, regardless of whether your bet was good or bad
Lecture Activity 1

Fill in the blank weights on your sheet!

Round 1: Should I buy them flowers?
What do the experts say?
• Expert 1, 2, 3 say *no*
• Expert 4, 5 say *yes*

Correct Answer? *Yes!*

Round 2: Should I show up fashionably late?
What do the experts say?
• Expert 3, 5 say *no*
• Expert 1, 2, 4 say *yes*

Correct Answer? *No!*
Lecture Activity 1

Fill in the blank weights on your sheet!

Round 1: Should I buy them flowers?
What do the experts say?
- Expert 1, 2, 3 say *no*
- Expert 4, 5 say *yes*

Correct Answer? **Yes!**

Round 2: Should I show up fashionably late?
What do the experts say?
- Expert 3, 5 say *no*
- Expert 1, 2, 4 say *yes*

Correct Answer? **No!**
Lecture Activity 1

Fill in the blank weights on your sheet!

Round 1: Should I buy them flowers?
What do the experts say?
• Expert 1, 2, 3 say **no**
• Expert 4, 5 say **yes**

Correct Answer? **Yes!**

Round 2: Should I show up fashionably late?
What do the experts say?
• Expert 3, 5 say **no**
• Expert 1, 2, 4 say **yes**

Correct Answer? **No!**
Lecture Activity 1 Answers

Updating the weights

<table>
<thead>
<tr>
<th>Weights</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Expert 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Round 1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Round 2</td>
<td>0.25</td>
<td>0.25</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

- Let’s see how we can make a decision in the third round!
- Remember, sum the weights of the experts of both options and pick the majority value!
Lecture Activity 2

Which decision should we make?

Round 3: Should I order the clams and garlic?

What do the experts say?
- Expert 1, 2, 3 say *yes*
- Expert 4, 5 say *no*
Lecture Activity 2

Which decision should we make?

Round 3: Should I order the clams and garlic?

What do the experts say?
- Expert 1, 2, 3 say yes
- Expert 4, 5 say no
Lecture Activity 2 Answer

Which decision should we make?

Round 3: Should I order the clams and garlic?
What do the experts say?
• Expert 1, 2, 3 say *yes*
• Expert 4, 5 say *no*

Majority Decision
Yes sum: $0.25 + 0.25 + 0.5 = 1$
No sum: $0.5 + 1 = 1.5$
Majority answer is **No**, so we don’t eat clams and garlic! Good choice…

› How good is our algorithm?
To analyze how good this is, we need to relate the number of mistakes we make (m) to the number of mistakes the best expert makes (b).

How can we do that? Use the weights! Let W represent the sum of the weights across the n experts at an arbitrary point in the algorithm.
Experts Algorithm - Analysis

- Look at the total weight assigned to the experts
- When the best expert makes the wrong decision...
 - We cut their weight in half
 - They started out with a weight of 1

\[
\left(\frac{1}{2} \right)^b \leq W
\]
Experts Algorithm - Analysis

- Look at the total weight assigned to the experts
- When we made the wrong decision...
 - At least $\frac{1}{2}$ weight was placed on the wrong decision
 - We will cut at least $\frac{1}{4}$ of W, so we will reduce the total weight to at most $\frac{3}{4}$ of W
- Since we gave the experts n total weight at the start:

$$W \leq n \left(\frac{3}{4} \right)^m$$
Experts Algorithm - Analysis

\[W \leq n \left(\frac{3}{4} \right)^m \]

\[\left(\frac{1}{2} \right)^b \leq W \leq n \left(\frac{3}{4} \right)^m \]
Experts Algorithm - Analysis

\[
\left(\frac{1}{2}\right)^b \leq W \leq n \left(\frac{3}{4}\right)^m
\]

\[
\left(\frac{1}{2^b}\right) \leq W \leq n \left(\frac{3}{4}\right)^m
\]

\[
\left(\frac{1}{2^b}\right) \leq n \left(\frac{3}{4}\right)^m
\]

\[-b - \log_2 n \leq m \log_2 \left(\frac{3}{4}\right)\]

\[b + \log_2 n \geq m \log_2 \left(\frac{4}{3}\right)\]

\[
\frac{(b + \log_2 n)}{\log_2 \left(\frac{4}{3}\right)} \geq m
\]

So the number of mistakes we make, \(m\), is at most 2.41 times the number of mistakes the best expert makes, \(b\), plus some change.
We want THE BEST

- How to find the best…
 - apartment?
 - deal for a ticket?
 - class to take?
 - partner?
- How can we know that they’re the best?
- How much effort are we willing to spend to find the best one?
The \{Best Choice, Dating\} Problem

- Also known as the secretary problem
- There are \(n\) people we are interested in, and we want to end up dating the best one

Assumptions:
- People are consistently comparable, and \(\text{score}(\text{a}) \neq \text{score}(\text{b})\) for arbitrary people \(\text{a}\) and \(\text{b}\)
- You don’t know anyone’s score until you’ve gone on at least one date with them
- Can only date one person at a time (serial monogamy)
- Anyone you ask to stay with you will agree to do so
Dating Problem

‣ What’s the offline solution?
 ‣ If you already know everyone’s score, just pick the best person

‣ A naïve online solution?
 ‣ Try going out with everyone to assign them scores, and ask the best person to take you back

‣ Problems:
 ‣ Takes a lot of time / money, depending on n
 ‣ Assumes that they will take you back
Dating Problem

- Two main constraints:
 - You can’t look ahead into the future
 - There’s no “undo” — if you let someone go, chances are they’ll be taken by the time you ask for them back

- In other words, the problem is: Do I reject the current possibility in hopes of landing something better if I keep looking, or do I stick with what I have?
Dating Problem

Solution:

- Pick a random ordering of the n people
- Go out with the first k people.
- No matter how the dates go, reject them (calibration of expectations)
- After these k dates, pick the first person that’s better than everyone we’ve seen so far, and stick with them – they’re probably the best candidate
Dating Problem - Analysis

- What value of k maximises our chances of ending up with the best person?

- 3 Cases to consider:
 - What if the best person is in the first k?
 - We end up alone. Oops.
 - What if the person that we pick isn’t actually the best?
 - Oh well, we live in blissful ignorance
 - Otherwise, we successfully pick the best person!
Consider the candidate at position j

Let’s first consider the probability that the algorithm pairs us with this candidate, given a value of k

$$P_{\text{choose}}(k, j) = \begin{cases}
0 & \text{if } j \leq k, \\
\frac{k}{j - 1} & \text{otherwise}
\end{cases}$$
Dating Problem - Analysis

- Consider the candidate at position j
- Case 1

$$P_{\text{choose}}(k, j) = \begin{cases}
0 & \text{if } j \leq k, \\
\frac{k}{j - 1} & \text{otherwise}
\end{cases}$$
Case 2:

There exists some person at position i who has the highest score we’ve seen so far by the time we’re considering the jth person.

$$P_{\text{choose}}(k, j) = \begin{cases} 0 & \text{if } j \leq k, \\ \frac{k}{j-1} & \text{otherwise} \end{cases}$$
Dating Problem - Analysis

- The probability that the jth person actually is the best is $1 / n$.

- For a given k, the probability that we end up with the best person, P_{best}, is the sum of the conditional probabilities for each valid value of j.

$$ P_{\text{best}}(k) = \sum_{j=k+1}^{n} \left(\frac{k}{j - 1} \right) \left(\frac{1}{n} \right) $$
In the above graph, what's the k/n value that maximizes p_{best}?
And what's the maximum value?
Dating Problem - Analysis

- $1/e$, for both the maximum value of P_{best} and the maximizing input for k/n

$$\frac{1}{e} = \frac{k}{n} \implies k = \frac{n}{e}$$

- So, with $1/e = 36.79\%$ probability, if your strategy is to date the first person better than everyone in the first 36.79% of dates, you’ll end up with the best person!
Dating Problem - Improvements

- \(\frac{1}{e} \) probability of not ending up with anyone :(
 - Strategy: Be desperate
 - Pick the last person, if you get that far
 - With probability \(\frac{1}{e} \), we pick the last person who will have, on average, rank \(n/2 \), so we'll probably be ok
 - Strategy: Gradually lower expectations
 - Pick a series of timesteps, \(t_0, t_1, t_2, t_k \ldots \)
 - Reject the first \(t_0 \) dates as before
 - Look for the best person we've seen so far between dates \(t_0 \) and \(t_1 \)
 - If we find them, great!
 - Otherwise, between dating the \((t_1 + 1) \)th and \(t_2 \)th people, look for either the first or the second best we haven't yet dated
 - Repeat the above, gradually accepting a larger “pool”
 - We'll probably do better than the “be desperate” strategy, though by how much is hard to say without hardcore math
Recap

- An *online algorithm* is an algorithm where input is fed to you piece by piece, which makes writing a fast and optimal algorithm much more difficult.
- Competitive analysis frames an online algorithm’s efficiency in terms of an offline solution.
CS Applications

- CPUs and memory caches (CS33, CS157)
 - Intel pays major $$$ for good caching strategies
- Artificial intelligence (CS141)
 - Heuristics, search, genetic algorithms
- Machine learning (CS142)
- Statistics
More Applications (continued)

- Economics
 - Stocks and trading
 - Game theory
 - Gambling

- Biology (featuring 2 authors of our textbook, Papadimitriou and Varizani)
 - Our textbook: Dasgupta, Papadimitriou, and Varizani
 - Evolution as a balance between fitness and diversity, given an unknown future