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Motivation

» We don't always start off with all the data we
want at once

» VWe want the best algorithms to answer
questions about such data




Oftline Algorithms

» An offline algorithm has access to all of its data at the start
— 1t "knows" all of Its data in advance

» Most of what you have done In this class has been offline
(or at least given offline)

Not connected +y

No connections are available
Troubleshoot

Open Network and Sharing Center
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Online Algorithms

» An online algorithm does not have access to all of the
data at the start

» Data is received serially, with no knowledge of what
comes next

» How do you make a good algorithm when you don't
<now the future!?




Ski-Rental Problem

» You like skiing
» You're going to go skiing for n days
» You need to decide: Do you rent skis or buy skis?
» Renting:
» $50 per day
» Buy:
» $500 once

» Goal: Minimize cost



Ski-Rental Problem (Oftline)

» Offline solution:
» It n < [0, rent!

» Else, buy!

» [ough luck. You don't know what n Is

» You love skiing so much,
you'll ski as long as you don't
oet Injured



Ski-Rental Problem — Rent vs. Buy

Total $ .
$500 Buy
[ Ime

10 Days
8



Ski-Rental Problem (Oftline)

Total $ | oy
Offline solution Is

somewhere on the
blue line

$500

' Time
10 Days
9



Ski-Rental Problem (Online)

» VWe don't know the future, so what can we do!

» [ry to get within some constant multiplicative factor of the
offline solution!

» “| want to spend at most X times the amount the offline
solution would spend”

» Strategy:
» Rent until total spending equals the cost of buying
» [hen buy It we want to ski some more



Ski-Rental Problem (Online)

Total $

1000 p-----------mmmm e .
Online solution Is
somewhere on the
purple line

$500

10 Days



Ski-Rental Problem — Analysis

» How good Is this!
» If we ski 10 days or less, we match the optimal solution!

» If we ski more than |0 days, we never spend more than twice
the offline solution

» This is not the only online solution!

£




Comparing Solutions
Total $

Online solution

Offline solution

Days



How good Is this!

» How do we know that our algorithms are
"good’, I.e. close to optimal!

» What can we ¢

the most optinr

o If we @

on't even know what

al algortt

M 1S?



Competitive Analysis

» Analyzing an online algorithm by comparing it to an offline

counterpart

» Competitive ratio: Ratio of performance of an online
algorithm to performance of an optimal offline algorithm

perf online < c- pert offline

8}

» Our ski-rental solution has a competitive ratio of 2, since we are
never more than 2 times as bad as the offline solution

» Our online algorithm Is "“2-competitive” with the offline solution



More than just skis...

» Refactoring versus working with a poor design

» Dating?




IRRE Experts Problem

» Dating i1s hard

» You know nothing about dating

» Dating can be reformulated as a series of binary
decisions

» Not “What should | wear?!” but

» Do | wear these shoes! (yes)
» Should we go at /¢ Should we go at 8! (/)
» Do | wart |5 minutes to text them back?! Or 3 hours! (3)

» Should | buy them flowers?! (no)

17



The Experts Problem: The Scenario

» YOu know nothing, so you
should ask for help

» YOu know h experts who
can give you advice before
you make each decision
(but you don't know If It's
o00d)




IRRE Experts Problem

» Rules
» [T you make the right decision, you gain nothing

» [T you make the wrong decision, you get | unit of
embarrassment

» lotal embarrassment = number of mistakes

» Goal: Minimize total embarrassment (relative to what the
best expert would've gotten)



The Experts Problem (Offline)

» Oftline:

» We know the best expert
» We only listen to them
» Whatever successes and mistakes they have, we have

» Online:
» We don't know the best expert

20



The Experts Problem (Online)

» Assign every expert a welght of |, for total weight of W =
N across all experts

» Repeat for every decision:
» Ask every expert for their advice
» Weight their advice and decide by majority vote

» After the outcome Is known, take every expert who gave
bad advice and cut their weight In half, regardless of
whether your bet was good or bad

21



Lecture Activity |

Fill in the blank weights on your sheet!

Round |:Should | buy them flowers!?
What do the experts say!?

* Expert |, 2,3 say no

* Expert 4,5 say yes

Correct Answer? Yes!

Round 2: Should | show up fashionably late?
What do the experts say!?

* Expert 3,5 say no

* Expert |, 2,4 say yes

Correct Answer! No! 2 MIHS. e
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Lecture Activity |

Fill in the blank weights on your sheet!
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Lecture Activity | Answers

Updating the weights
Weights Expert 1 Expert 2 Expert 3 Expert 4 Expert 5
Initial 1 1 1 1 1
Round 1
Round 2

» Let's see how we can make a decision in the thirc
» Remember; sum the welights of the experts of bo

round!

and pick the majority valuel

25
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Lecture Activity 2

Which decision should we make?

Round 3: Should | order the clams and garlic!?
What do the experts say!?

* Expert |, 2, 3 say yes

* Expert 4,5 say no

| Mig i
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Lecture Activity 2

Which decision should we make?

Round 3: Should | order the clams and garlic!?
What do the experts say!?

* Expert |, 2, 3 say yes

* Expert 4,5 say no

0 Mins &=
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Lecture Activity 2 Answer

Which decision should we make?

Round 3: Should | order the clams and garlic!?
What do the experts say!?

* Expert |, 2, 3 say yes

* Expert 4,5 say no

Majority Decision

Yes sum:0.25+ 025+ 0.5 = |
No sum:05+ | =1.5

Majority answer is NO, so we don’t eat clams and garlic! Good choice...

» How good Is our algorithm?

28



Multl

blicative Weights Algorithm - Analysis

» [0 analyze how good this Is, we need to

rela

e the number of

to t

mistakes we make (m)

ne humber of mis

makes (b)

rakes the best expert

»How can we do that! Use the welights!

et

across t

the

W represent the

algorrthm

sum of the welights

ne N experts at an arbitrary point in
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Experts Algorithm - Analysis

» Look at the total weight assigned to the experts

» When the best expert makes the wrong decision...
» We cut their weight in half
» They started out with a weight of |

30



Experts Algorithm - Analysis

» Look at the total weight assigned to the experts

» When we made the wrong decision...
» At least /2 welght was placed on the wrong decision

» We will cut at least /4 of W, so we will reduce the total weight
to at most 74 of W

» Since we gave the experts n total weight at the start:

3



Experts Algorithm - Analysis
wen(3)
(5) <w
(3) <wen (@)



Experts Algorithm - Analysis

3
b — log, n < mlog, (Z)
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We want [ HE BEST

» How to find the best...
» apartment!
» deal for a ticket?
» class to take!
» partner?
» How can we know that they're the best!

» How much effort are we willing to spend to find
the best one!

D2}



The {Best Choice, Dating} Problem

» Also known as the secretary problem

» [here are n people we are interested In, and we
want to end up dating the best one

» Assumptions:

» People are consistently comparable, and score(a) =
score(b) for arbitrary people a and b

» You don't know anyone’s score until you've gone on
at least one date with them

» Can only date one person at a time (serial monogamy)
» Anyone you ask to stay with you will agree to do so

515



Dating Problem

» What's the offline solution?

» If you already know everyone's score, just pick the best
DErson

» A naive online solution?

» [ry going out with everyone to assign them scores, and
ask the best person to take you back

» Problems:

» [akes a lot of time / money, depending on n

» Assumes that they will take you back

36



Dating Problem

» [wo main constraints:

» You can't look ahead into t

» There's no'undo’’ —

ne future

i you let someone go, chances are
they'll be taken by the time you ask for them back

» In other words, the problem

current possibility |
vetter if | keep loo
nave!

N hopes of

£

- |landi

<ing, or do | stic

B

ng somethi

< with what

Do | reject i

ng
|



Dating Problem

» Solution:
» Pick a random ordering of the n people

» Go out with the first k people.

» No matter how the dates go, reject them (calibration of
expectations)

» After these k dates, pick the first person that's better
than everyone we’ve seen so far, and stick with
them — they're probably the best candidate

38



Dating Problem - Analysis

» What value of k maximises our chances of
ending up with the best person?

» 3 Cases to consider:

» What if the best person is in the first k?
» We end up alone. Oops.

» What It the person that we pick isn't actually the best!
» Oh well, we live In blissful ignorance

» Otherwise, we successtully pick the best person!

57



Dating Problem - Analysis

» Consider the candidate at position j

» Let’s first consider the probability that the
algorithm pairs us with this candidate, given a

value of k

0 if 7 <k,
Pchaose(kvj) B K
g

otherwise

40



Dating Problem - Analysis

» Consider the candidate at position |

» Case |
e
0 9 k
0 if 7<%
Pc oose k, o k :
i (%, 5) otherwise

5 =1

i



Dating Problem - Analysis

» Case 2;

» [here exists some person at position | who has the
hishest score we've seen so far by the time we're
considering the jth person

e E——— I I
0 ) k 9 n
f— I I I
0 L ) J n

0 it 9l =k
Pchoose(kaj) s k

5=

27
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Dating Problem - Analysis

» The probabillity that the jth person actually Is
the bestis | / n)

» For a given K, the probability that we end up
with the best person, Py, Is the sum of the

conditional probabllities for each valid value of

Ppest(k) = Eni (j f 1) (%>




Dating Problem - Analysis

Prest (k) = jil (j f 1> @)

P
- Siade (%) e (%)

In the above graph, what's the k/n value that maximizes ppest!
And what's the maximum value!

44



Dating Problem - Analysis

» | /e, for both the maxim
the maximizing input for
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Dating Problem - Improvements

» | /e probability of not ending up with anyone i(

» Strategy: Be desperate
» Pick the last person, If you get that far
» With probability |/e, we pick the last person who will have, on average, rank

n/2,so we'll probably be ok

» Strategy: Gradually lower expectations

>

>

>

>

Pick a series of timesteps, ty, t), Ty, L. ..
Reject the first tO dates as before
ook for the best person we've seen so far between dates t; and t,

f we find them, great

» Otherwise, between dating the (t,+|)th and t,th people, look for either the

first or the second best we haven't yet dated

» Repeat the above, gradually accepting a larger “pool”
» We'll probably do better than the “"be desperate’” strategy, though by how

much Is hard to say without hardcore math

46



Recap

» An online algorithm is an algorithm w

to you piece

optimal algori
» Competitive analysis -
efficiency In terms of an o

DY plece, W

thm much
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line solution
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CS Applications

» CPUs and memory caches (C533, CS157)

» Intel pays major $$3% for good caching strategies

» Artificial intelligence (CS141)

» Heuristics, search, genetic algorithms

» Machine learning (CS142)
» Statistics

48



More Applications (continued)

» Economics
» Stocks and trading
» Game theory
» Gambling

» Biology (featuring 2 authors of our textbook,
Papadimitriou and Varizani)

» https://www.quantamagazine.org/20 1406 | 8-the-game-
theory-of-lite/

» Our textbook: Dasgupta, Papadimitriou, and Varizani

» Evolution as a balance between fitness and diversity,
given an unknown future

255


https://www.quantamagazine.org/20140618-the-game-theory-of-life/
https://www.quantamagazine.org/20140618-the-game-theory-of-life/
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Dealing with Hard
Problems

CS16: Introduction to Data Structures & Algorithms
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Outline

» Seating Arrangements
» Problem hardness

» B NP NP-Complete, NP-Hard

» Dealing with hard problems

» Problem translation

» Genetic Algorithms

» Approximations

» Travling Salesman Problem

S|



Seating Arrangement Problem

» Your dating algorithms worked!

» You need to plan the seating arrangements
for a wedding

Table 1 Table 2 Table 3

Table 4 Table 5 Table 6

o



Seating Arrangement Problem

» Constraints / goals
» k tables
» h people

» Avold antagonistic pairs (exes, rivals, etc) sitting at the
same table

» Maximise overall happiness

i



Quantifications of Pair-wise Happiness

» Assume each pair of people (A, B) has an associated
‘compatibility score’

» for friends comp(A,B) = 10

» for couples comp(A, B) = 50
» for antagonistic pairs comp(A B) = =500

» [hese values are known ahead of time

o7



Quantifications of Table-wise Happiness

» Sum all the compatibility scores for each pair at
the table

H (table) = Z comp(pair)

pair&table

)5



Quantification of Total Happiness

» Utilitarian Approach:
Total_H,ilitarian = Z H (table)

tctables

» Egalitarian Approach:

tEtables

» Many more options!

56



1 his seems hard

» Could we just try permutations and comparing
scores!

» With 60 people, 60! permutations to test
s o [0¢

» ouch

» [his doesn't necessarily mean that the problem
is hard, however

57



Defining Problem Hardness

» Hardness of problem Is defined by the runtime of the best
solution

» A bad sorting algorithm could be O(n!), but sorting in general
isn't considered hard, because we have fast algorithms to solve it

» Polynomial Runtimes
» O(n), O(n2), O(n>00)
» Problems with these solutions are tractable
» Super-Polynomial Runtimes
@ ) O (), O(nn)
» Problems with these solutions are intractable

58



Exponential vs. Polynomial Growth Rates
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Categories of Hardness

» NP

» The set of problems for which we can verify the correctness

of a solution in polynomial time

P

> A subset of NF where the problem is solvable in polynomial
time

» NP-Complete

» “The hardest problems in NP”

» Solution is checkable in polynomial time

» not known whether there exist any polynomial time
algorithms to solve them

» NP-Hard

» Problems that are “at least as hard as the hardest problems
in NP"
» Don't necessarily have solutions that are checkable in

polynomial time
60

NP-Complete

Complexity



Back to our seating arrangement

» o get an Inturtion as to how
s, let's see If we can convert It in

tha

. has already been proven to

@c
» But

mplete, or NP-Hard

... where to start!

6|

0 a prob

he In NP

nard our problem

cIm

> NP-



Constraint Relaxation

ﬁ

» See If you can solve an ‘easier’ version of the
broblem, by removing some of the properties
that make the problem hard

» |In real life
» “what would you do It you could not fail?”

» “which job would you take I they all paid equally?”

62



| et’'s avold disaster

» Constraints / goals
» # of tables
» # of people

» Avold antagonistic pairs (exes, rivals, etc)

} M_a‘9< aallelfalia\W/alale! alslialialiaYaYele
FTTTTON U VI QU I(,LI.JI.JII\/JJ

» Hopefully, having no tables with antagonistic pairs will
but In the right direction for maximising overall
nappiness

63



Relationships as a grapn




An Antagonism graph




Iranslating the problem

» Now, we have these antagonistic relationships
represented as a graph!

» Question Is no longer:

» Can we avoid antagonistic pairs (exes, rivals, etc) sitting at
the same table, given n people and k tables?

» Instead:
» Use colours to represent different tables, so:

» Could we assign | of k colours to each node In the
antagonism graph, such that no two nodes that share an
edge have the same colour?

66



An Antagonism graph




Lecture Activity 3

Try out the Graph k-colouring problem!

2 Minst .

68



Lecture Activity 3

Try out the Graph k-colouring problem!

| Ming .
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Lecture Activity 3

Try out the Graph k-colouring problem!

0 Mins. &

70



L ecture Activity 3 Answers

Answers



Graph colouring example




Graph k-colouring

» Generally, the problem of
determining whether nodes In
a graph can be coloured using
up to K separate colours,
such that no two adjacent
vertices share a colour

» This is NP-Complete!

» And thus, even this much
easler version of the problem

s very hard

NP-Complete

............
........
.
oooo
. -

765
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Are we screwed!

» [ he best algorithms to solve the graph k-

colorability problem take O(2.445") time and
space

» With 60 guests, 2.445%0 = ~450 billion

» which isn't that bad

» Modern computers can handle ~3 billion

‘operations’ / sec, so this would take more than a
couple minutes, probably less than |5

» But we've still only avoided the worst casel

74



Genetic Algorithms

» A form of ‘gsuess and check’, using a number of
Hossible solutions to a problem

» Inspired the process of evolution

73



Blology Review

» All organisms are made up of genes, w

oenes (or a combination ma

Nere

Ny genes) In

broduce our phenotype,-
those genes

» VWe are all a combination of
parents genes, and some ran

a Mmix of our

‘eract to

he expression of

dom mutations




Evolution via Sexual Reproc

uction, broadly

» [here exist an inrtial population of organisms

within a species

» [he ‘sexually fit’ organisms reproduce

» [ake some genes of parent A, some of parent B

» add some random nolse

» this new collection of genes Is a new specimen, AB

» Older + less fit parts of popu
the survivors to repeat the re

77
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Solution Mating

p & O 0 O
D O ¢ O 0 O

e == 300 Total == s

TotalE =400
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High-Level Genetic Algorithm Pseudocode

function geneticAlgo(opt seed sols):

solution_set = opt seed sols or || randomly generated initial population of solutions

init size = size(solution set, threshold, time limit)

while True:

new gen = |[]

for some number of iterations:
A, B = 2 solutions from solution set, drawn at random
AB’ = a new solution that combines properties of A and B
randomlyMutate (AB')
new gen.append(AB’)

solution set.addAll(new _gen)

rank solutions in solution set based on ‘fitness’

remove all but init size many best solutions from solution set

1f best(solution set) > threshold or time 1limit has passed:
break

return highest ranking solution from solution set

&)



Genetic Algorithms

» |f seeded wr

fort

ne Initia

solus

ouaranteed -
800G

Hons, ©lL

solutions

» Can come up with

_t

DO

'h ‘good’ solutions

bulation of

DUTL

1S

‘0 be at least as
as the best of the inrtial

unexpected solutions

» lend to do really welll
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—Hloneymooning

» Also known as the Traveling Salesman Problem

» [SE defined: "Given a list of cities and the

distances between each pair of cities, what Is the
shortest possible route that visits each city
exactly once and returns to the origin city?”

8|



Cities (not to scale):




Best route:

Metamora

Bloomington

BERVIIE
Urbana
Clinton

Mt.
Pulask Monticello

Springfield

Sullivan

Taylorville




TSP Hardness

» Given a graph with n nodes

» we could exhaustively try O(n!) possible city-orderings

» But let's see If we can do any better
» Finding the most optimal route 1s NP-Hard :(
» Held-Karl algorithm solves it iIn O(n2x 2n)

84



But we're not totally screwed!

» Again, relaxing constraints. ..

» What it we were
» allowed to visit a city more than once, and

» allowed to retrace your steps for free!

» Sounds like the problem reduces to connecting
alls the crties as cheaply as possible - do we
know how to solve this problem?

85



MSTs as a starting point to approximate TSP

» [his is very easy!
» Provides a lower bound for the real solution

» a solution with free backtracking can't possibly be
worse than a solution that has to follow all the original
rules

» [T we find a solution to the original problem, can use
the MST as a comparison for how close we might be

» It an MST for some graph has total 100 mile distance, but a
given solution has total distance of | 10, we are at most 0%
longer than the best solution

86



MST of cities:

Springfield

Metamora

Taylorville

Mt.
Pulask

Bloomington

Clinton

Monticello

Sullivan

Shelbyville

Urbana

BERVIIE




Best route vs. MST




