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Motivation
‣ We don’t always start off with all the data we 

want at once
‣ We want the best algorithms to answer 

questions about such data

3



Offline Algorithms
‣An offline algorithm has access to all of its data at the start 
– it “knows” all of its data in advance
‣Most of what you have done in this class has been offline 
(or at least given offline)
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Online Algorithms
‣An online algorithm does not have access to all of the 
data at the start
‣Data is received serially, with no knowledge of what 
comes next
‣How do you make a good algorithm when you don’t 
know the future?

5



Ski-Rental Problem
‣You like skiing
‣You’re going to go skiing for n days
‣You need to decide: Do you rent skis or buy skis?
‣Renting:
‣$50 per day

‣Buy:
‣$500 once

‣ Goal: Minimize cost
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Ski-Rental Problem (Offline)
‣Offline solution:
‣ If n < 10, rent!
‣ Else, buy!

‣Tough luck. You don’t know what n is
‣ You love skiing so much,  

you’ll ski as long as you don’t  
get injured
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Ski-Rental Problem – Rent vs. Buy
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Ski-Rental Problem (Offline)
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Ski-Rental Problem (Online)
‣We don’t know the future, so what can we do?
‣Try to get within some constant multiplicative factor of the 
offline solution!
‣ “I want to spend at most X times the amount the offline 

solution would spend”
‣Strategy:
‣ Rent until total spending equals the cost of buying
‣ Then buy if we want to ski some more
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Ski-Rental Problem (Online)
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Ski-Rental Problem – Analysis
‣How good is this?
‣ If we ski 10 days or less, we match the optimal solution!
‣ If we ski more than 10 days, we never spend more than twice 

the offline solution
‣ This is not the only online solution!
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Comparing Solutions
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How good is this?
‣ How do we know that our algorithms are 

“good”, i.e. close to optimal?
‣ What can we do if we don’t even know what 

the most optimal algorithm is?
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Competitive Analysis
‣Analyzing an online algorithm by comparing it to an offline 

counterpart
‣Competitive ratio: Ratio of performance of an online 

algorithm to performance of an optimal offline algorithm 

‣Our ski-rental solution has a competitive ratio of 2, since we are 
never more than 2 times as bad as the offline solution
‣Our online algorithm is “2-competitive” with the offline solution
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More than just skis…
‣ Refactoring versus working with a poor design 
‣ Dating?
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The Experts Problem
‣ Dating is hard
‣ You know nothing about dating
‣ Dating can be reformulated as a series of binary 

decisions
‣ Not “What should I wear?”, but

‣ Do I wear these shoes? (yes)

‣ Should we go at 7? Should we go at 8? (7)

‣ Do I wait 15 minutes to text them back? Or 3 hours? (3)

‣ Should I buy them flowers? (no)
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The Experts Problem: The Scenario
‣You know nothing, so you 
should ask for help
‣You know n experts who 
can give you advice before 
you make each decision 
(but you don’t know if it’s 
good)
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The Experts Problem
‣Rules
‣ If you make the right decision, you gain nothing
‣ If you make the wrong decision, you get 1 unit of 
embarrassment
‣Total embarrassment = number of mistakes

‣Goal: Minimize total embarrassment (relative to what the 
best expert would’ve gotten)
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The Experts Problem (Offline)
‣Offline:

‣ We know the best expert
‣ We only listen to them
‣ Whatever successes and mistakes they have, we have

‣Online: 
‣We don’t know the best expert
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The Experts Problem (Online)
‣Assign every expert a weight of 1, for total weight of W = 
n across all experts
‣Repeat for every decision:
‣Ask every expert for their advice
‣Weight their advice and decide by majority vote 
‣After the outcome is known, take every expert who gave 
bad advice and cut their weight in half, regardless of 
whether your bet was good or bad
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Lecture Activity 1
Fill in the blank weights on your sheet!

Round 1: Should I buy them flowers?
What do the experts say?
• Expert 1, 2, 3 say no
• Expert 4, 5 say yes 

Correct Answer? Yes!

Round 2: Should I show up fashionably late?
What do the experts say?
• Expert 3, 5 say no
• Expert 1, 2, 4 say yes 

Correct Answer? No!
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Lecture Activity 1 Answers
Updating the weights

‣Let’s see how we can make a decision in the third round!
‣Remember, sum the weights of the experts of both options 
and pick the majority value!
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Lecture Activity 2
Which decision should we make?

Round 3: Should I order the clams and garlic?
What do the experts say?
• Expert 1, 2, 3 say yes
• Expert 4, 5 say no
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Lecture Activity 2 Answer
Which decision should we make?

Round 3: Should I order the clams and garlic?
What do the experts say?
• Expert 1, 2, 3 say yes
• Expert 4, 5 say no

Majority Decision
Yes sum: 0.25 + 0.25 + 0.5 = 1
No sum: 0.5 + 1 = 1.5
Majority answer is No, so we don’t eat clams and garlic! Good choice…

‣How good is our algorithm?
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Multiplicative Weights Algorithm - Analysis

‣To analyze how good this is, we need to 
relate the number of mistakes we make (m) 
to the number of mistakes the best expert 
makes (b)
‣How can we do that? Use the weights!
‣Let W represent the sum of the weights 
across the n experts at an arbitrary point in 
the algorithm
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Experts Algorithm - Analysis
‣Look at the total weight assigned to the experts
‣When the best expert makes the wrong decision…
‣We cut their weight in half
‣ They started out with a weight of 1
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Experts Algorithm - Analysis
‣Look at the total weight assigned to the experts
‣When we made the wrong decision…
‣ At least ½ weight was placed on the wrong decision
‣We will cut at least ¼ of W, so we will reduce the total weight 

to at most ¾ of W
‣ Since we gave the experts n total weight at the start:
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Experts Algorithm - Analysis
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Experts Algorithm - Analysis
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We want THE BEST
‣ How to find the best…

‣ apartment?
‣ deal for a ticket?
‣ class to take?
‣ partner?

‣ How can we know that they’re the best?
‣ How much effort are we willing to spend to find 

the best one?
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The {Best Choice, Dating} Problem
‣ Also known as the secretary problem
‣ There are n people we are interested in, and we 

want to end up dating the best one
‣ Assumptions:
‣ People are consistently comparable, and score(a) != 
score(b) for arbitrary people a and b

‣ You don’t know anyone’s score until you’ve gone on 
at least one date with them

‣ Can only date one person at a time (serial monogamy)
‣ Anyone you ask to stay with you will agree to do so
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Dating Problem
‣ What’s the offline solution?
‣ If you already know everyone’s score, just pick the best 

person

‣ A naïve online solution?
‣ Try going out with everyone to assign them scores, and 

ask the best person to take you back

‣ Problems:
‣ Takes a lot of time / money, depending on n
‣ Assumes that they will take you back

36



Dating Problem
‣ Two main constraints:
‣ You can’t look ahead into the future
‣ There’s no “undo” – if you let someone go, chances are 

they’ll be taken by the time you ask for them back

‣ In other words, the problem is: Do I reject the 
current possibility in hopes of landing something 
better if I keep looking, or do I stick with what I 
have?
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Dating Problem
‣ Solution:
‣ Pick a random ordering of the n people
‣ Go out with the first k people.
‣ No matter how the dates go, reject them (calibration of 

expectations)
‣ After these k dates, pick the first person that’s better 

than everyone we’ve seen so far, and stick with 
them – they’re probably the best candidate
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Dating Problem - Analysis
‣ What value of k maximises our chances of 

ending up with the best person?
‣ 3 Cases to consider :
‣ What if the best person is in the first k?
‣ We end up alone. Oops.

‣ What if the person that we pick isn’t actually the best?
‣ Oh well, we live in blissful ignorance

‣ Otherwise, we successfully pick the best person!
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Dating Problem - Analysis

‣ Consider the candidate at position j
‣ Let’s first consider the probability that the 

algorithm pairs us with this candidate, given a 
value of k
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Dating Problem - Analysis

‣ Consider the candidate at position j
‣ Case 1
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Dating Problem - Analysis

‣ Case 2:
‣ There exists some person at position i who has the 

highest score we’ve seen so far by the time we’re 
considering the jth person
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Dating Problem - Analysis
‣ The probability that the jth person actually is 

the best is 1 / n)
‣ For a given k, the probability that we end up 

with the best person, Pbest, is the sum of the 
conditional probabilities for each valid value of j
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Dating Problem - Analysis
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Dating Problem - Analysis
‣ 1/e, for both the maximum value of Pbest and 

the maximizing input for k/n
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‣ So, with 1/e = 36.79% probability, if your strategy 
is to date the first person better than everyone 
in the first 36.79% of dates, you’ll end up with 
the best person!



Dating Problem - Improvements
‣1/e probability of not ending up with anyone :(

‣ Strategy: Be desperate
‣ Pick the last person, if you get that far
‣ With probability 1/e, we pick the last person who will have, on average, rank 

n/2, so we’ll probably be ok
‣ Strategy: Gradually lower expectations

‣ Pick a series of timesteps, t0, t1, t2, tk…
‣ Reject the first t0 dates as before
‣ Look for the best person we’ve seen so far between dates t0 and t1

‣ If we find them, great!
‣ Otherwise, between dating the (t1+1)th and t2th people, look for either the 

first or the second best we haven’t yet dated
‣ Repeat the above, gradually accepting a larger “pool”
‣ We’ll probably do better than the “be desperate” strategy, though by how 

much is hard to say without hardcore math
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Recap
‣An online algorithm is an algorithm where input is fed 
to you piece by piece, which makes writing a fast and 
optimal algorithm much more difficult
‣Competitive analysis frames an online algorithm’s 
efficiency in terms of an offline solution
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CS Applications
‣ CPUs and memory caches (CS33, CS157)
‣ Intel pays major $$$ for good caching strategies

‣ Artificial intelligence (CS141)
‣ Heuristics, search, genetic algorithms

‣ Machine learning (CS142)
‣ Statistics
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More Applications (continued)
‣ Economics
‣ Stocks and trading
‣ Game theory
‣ Gambling

‣ Biology (featuring 2 authors of our textbook, 
Papadimitriou and Varizani)
‣ https://www.quantamagazine.org/20140618-the-game-

theory-of-life/
‣ Our textbook: Dasgupta, Papadimitriou, and Varizani
‣ Evolution as a balance between fitness and diversity, 

given an unknown future
49
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Outline
‣ Seating Arrangements
‣ Problem hardness
‣ P, NP, NP-Complete, NP-Hard
‣ Dealing with hard problems
‣ Problem translation
‣ Genetic Algorithms
‣ Approximations

‣ Travling Salesman Problem
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Seating Arrangement Problem
‣ Your dating algorithms worked!
‣ You need to plan the seating arrangements 

for a wedding
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‣ Constraints / goals
‣ k tables
‣ n people
‣ Avoid antagonistic pairs (exes, rivals, etc) sitting at the 

same table
‣ Maximise overall happiness
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Seating Arrangement Problem



‣ Assume each pair of people (A, B) has an associated 
‘compatibility score’
‣ for friends comp(A, B) = 10

‣ for couples comp(A, B) = 50

‣ for antagonistic pairs comp(A, B) = -500

‣ These values are known ahead of time

54

Quantifications of Pair-wise Happiness



‣ Sum all the compatibility scores for each pair at 
the table

Quantifications of  Table-wise Happiness
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H (table) =
X

pair2table

comp(pair)



Quantification of  Total Happiness
‣ Utilitarian Approach:
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Total Hegalitarian = min
t2tables

H(t)

Total Hutilitarian =
X

t2tables

H(table)

‣ Egalitarian Approach:

‣ Many more options!



This seems hard
‣ Could we just try permutations and comparing 

scores?
‣ With 60 people, 60! permutations to test
‣ 8.32 x 1081

‣ ouch

‣ This doesn’t necessarily mean that the problem 
is hard, however
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Defining Problem Hardness
‣ Hardness of problem is defined by the runtime of the best 

solution
‣ A bad sorting algorithm could be O(n!), but sorting in general 

isn’t considered hard, because we have fast algorithms to solve it

‣ Polynomial Runtimes
‣ O(n), O(n2), O(n500) 
‣ Problems with these solutions are tractable

‣ Super-Polynomial Runtimes
‣ O(n!), O(2n), O(nn)
‣ Problems with these solutions are intractable
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Exponential vs. Polynomial Growth Rates
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Categories of Hardness
‣ NP

‣ The set of problems for which we can verify the correctness 
of a solution in polynomial time

‣ P
‣ A subset of NP, where the problem is solvable in polynomial 

time

‣ NP-Complete
‣ “The hardest problems in NP”
‣ Solution is checkable in polynomial time
‣ not known whether there exist any polynomial time 

algorithms to solve them

‣ NP-Hard
‣ Problems that are “at least as hard as the hardest problems 

in NP”
‣ Don’t necessarily have solutions that are checkable in 

polynomial time
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Back to our seating arrangement
‣ To get an intuition as to how hard our problem 

is, let’s see if we can convert it into a problem 
that has already been proven to be in NP, P, NP-
Complete, or NP-Hard

‣ But… where to start?
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Constraint Relaxation
‣ See if you can solve an ‘easier’ version of the 

problem, by removing some of the properties 
that make the problem hard

‣ In real life 
‣ “what would you do if you could not fail?”
‣ “which job would you take if they all paid equally?”
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Let’s avoid disaster

63

‣ Constraints / goals
‣ # of tables
‣ # of people
‣ Avoid antagonistic pairs (exes, rivals, etc)
‣ Maximise overall happiness

‣ Hopefully, having no tables with antagonistic pairs will 
put in the right direction for maximising overall 
happiness



Relationships as a graph
‣ edge key:

‣ friends

‣ couple

‣ enemies

‣ no edge = no prefs
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An Antagonism graph
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Translating the problem
‣ Now, we have these antagonistic relationships 

represented as a graph!
‣ Question is no longer:
‣ Can we avoid antagonistic pairs (exes, rivals, etc) sitting at 

the same table, given n people and k tables?

‣ Instead:
‣ Use colours to represent different tables, so:
‣ Could we assign 1 of k colours to each node in the 

antagonism graph, such that no two nodes that share an 
edge have the same colour?
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An Antagonism graph
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Lecture Activity 3
Try out the Graph k-colouring problem!
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Lecture Activity 3
Try out the Graph k-colouring problem!
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Lecture Activity 3
Try out the Graph k-colouring problem!
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Lecture Activity 3 Answers
Answers!
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Graph colouring example
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Graph k-colouring
‣ Generally, the problem of 

determining whether nodes in 
a graph can be coloured using 
up to k separate colours, 
such that no two adjacent 
vertices share a colour

‣ This is NP-Complete!
‣ And thus, even this much 

easier version of the problem 
is very hard
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Are we screwed?
‣ The best algorithms to solve the graph k-

colorability problem take O(2.445n) time and 
space

‣ With 60 guests, 2.44560 = ~450 billion
‣ which isn’t that bad
‣ Modern computers can handle ~3 billion 

‘operations’ / sec, so this would take more than a 
couple minutes, probably less than 15 

‣ But we’ve still only avoided the worst case!
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Genetic Algorithms
‣ A form of ‘guess and check’, using a number of 

possible solutions to a problem
‣ Inspired the process of evolution
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Biology Review
‣ All organisms are made up of genes, where 

genes (or a combination many genes) interact to 
produce our phenotype, the expression of 
those genes

‣ We are all a combination of a mix of our 
parents genes, and some random mutations
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Evolution via Sexual Reproduction, broadly

‣ There exist an initial population of organisms 
within a species

‣ The ‘sexually fit’ organisms reproduce
‣ Take some genes of parent A, some of parent B
‣ add some random noise
‣ this new collection of genes is a new specimen, AB’

‣ Older + less fit parts of populations die off, leaving 
the survivors to repeat the reproduction process
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Solution Mating

78

1 2

4 5

3

6

1 2

4 5

3

6

1 2

4 5

3

6

+

Total_H = 300 Total_H = 325

Total_H = 400



High-Level Genetic Algorithm Pseudocode
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function geneticAlgo(opt_seed_sols):
   solution_set = opt_seed_sols or || randomly generated initial population of solutions
   init_size = size(solution_set, threshold, time_limit)

   while True:
new_gen = []
for some number of iterations:

A, B = 2 solutions from solution_set, drawn at random
AB’ = a new solution that combines properties of A and B
randomlyMutate(AB’)
new_gen.append(AB’)

solution_set.addAll(new_gen)
rank solutions in solution_set based on ‘fitness’
remove all but init_size many best solutions from solution_set
if best(solution_set) > threshold or time_limit has passed:

break
return highest ranking solution from solution_set



Genetic Algorithms
‣ If seeded with ‘good’ solutions 

for the initial population of 
solutions, output is 
guaranteed to be at least as 
good as the best of the initial 
solutions

‣ Can come up with 
unexpected solutions

‣ Tend to do really well!
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Honeymooning
‣ Also known as the Traveling Salesman Problem
‣ TSP, defined:  “Given a list of cities and the 

distances between each pair of cities, what is the 
shortest possible route that visits each city 
exactly once and returns to the origin city?”
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Cities (not to scale): 
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Best route:
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TSP Hardness
‣ Given a graph with n nodes
‣ we could exhaustively try O(n!) possible city-orderings
‣ But let’s see if we can do any better

‣ Finding the most optimal route is NP-Hard :(
‣ Held-Karl algorithm solves it in O(n2 x 2n)
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But we’re not totally screwed!
‣ Again, relaxing constraints…
‣ What if we were
‣ allowed to visit a city more than once, and
‣ allowed to retrace your steps for free?

‣ Sounds like the problem reduces to connecting 
alls the cities as cheaply as possible - do we 
know how to solve this problem?
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MSTs as a starting point to approximate TSP

‣ This is very easy!
‣ Provides a lower bound for the real solution
‣ a solution with free backtracking can’t possibly be 

worse than a solution that has to follow all the original 
rules

‣ If we find a solution to the original problem, can use 
the MST as a comparison for how close we might be
‣ If an MST for some graph has total 100 mile distance, but a 

given solution has total distance of 110, we are at most 10% 
longer than the best solution
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MST of cities:

87

Metamora

Pekin

Springfield

Taylorville

Decatur

Shelbyville

Sullivan

Paris

Danville

Urbana

Monticello

Clinton

Mt. 
Pulask

Bloomington



Best route vs. MST
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