Final Review & Wrap-up

CS I 6: Introduction to Data Structures & Algorithms
Summer 202 I

Shortest paths and MSTs

- What's a shortest path?
- What's a MST?
- How are they related?
- How are they different?

Single source shortest path

Draw next to each node the cost of the shortest path from A to that node

Shortest path

Shortest path

Shortest path

Minimum spanning tree

Draw the minimum spanning tree of this graph

Minimum spanning tree

Distance from A to B in MST? Distance from A to D in MST?

Dijkstra Pseudo-Code

```
function dijkstra(G, s):
  // Input: graph G with vertices V, and source s
  // Output: Nothing
  // Purpose: Decorate nodes with shortest distance from s
  for v in V:
    v.dist = infinity // Initialize distance decorations
    s.dist = 0 // Set distance to start to 0
  PQ = PriorityQueue(V) // Use v.dist as priorities
  while PQ not empty:
     u = PQ.removeMin()
     for all edges (u, v): //each edge coming out of u
        if u.dist + cost(u, v) < v.dist: // cost() is weight</pre>
          v.dist = u.dist + cost(u,v) // Replace as necessary
          v.prev = u // Maintain pointers for path
          PQ.decreaseKey(v, v.dist)
```

Prim-Jarnik Pseudo-code

```
function prim(G):
   // Input: weighted, undirected graph G with vertices V
   // Output: list of edges in MST
   for all v in V:
     v.cost = \infty
     v.prev = null
   s = a random v in V // pick a random source s
   s.cost = 0
  MST = []
  PQ = PriorityQueue(V) // priorities will be v.cost values
  while PQ is not empty:
     v = PQ.removeMin()
      if v.prev != null:
         MST.append((v, v.prev))
      for all incident edges (v,u) of v such that u is in PQ:
         if u.cost > (v,u).weight:
            u.cost = (v,u).weight
            u.prev = v
            PQ.decreaseKey(u, u.cost)
 return MST
```

For the final...

- To study: look over homeworks, notes
- Rewrite definitions in your own words
- In answering questions:
 - Be explicit and clear
 - Convince us you understand!

- Analysis
 - Big-O
 - Worst-case analysis
 - Amortized analysis
 - Average-case analysis
 - Social responsibility

- Data structures
 - Dynamic stacks, queues, lists
 - Hash tables
 - Trees
 - BSTs
 - Heaps
 - Graphs

- Algorithms
 - Recursive
 - Dynamic programming
 - Searching trees and graphs
 - Sorting
 - Shortest paths
 - MSTs
 - Topological sort

- Other stuff
 - Basics of machine learning
 - Functional programming
 - Hardness
 - Program verification

Some advice

- Sometimes performance doesn't matter
 - Programs that will run once on small data
 - Cases where n is always small
- When it does, focus on big-O first
- Then on smaller things (constant factors, language choice, etc.)

Some advice

- Social responsibility: be prepared
- If you go on in CS (but really, regardless of what you do) at some point you'll have to make a choice
 - Your boss asks you to implement something ethically questionable
 - You get a job offer from a company whose work conflicts with your values
- Worth spending some time thinking about what you'll do

Some advice

- One reason to learn data structures and algorithms: try not to reinvent the wheel
- You're looking at a problem (for an independent class project, for work, for research, etc.)
 - Can this problem be represented as a graph?
 - Would a priority queue be useful?
 - Is this problem amenable to dynamic programming?
 - ▶ Is this problem NP-complete?
- You might not remember the details of Dijkstra's algorithm after this semester
 - But you'll know it's there when you need it!