
Final Review

&

Wrap-up
CS16: Introduction to Data Structures & Algorithms

Summer 2021

Shortest paths and MSTs

2

‣ What’s a shortest path?

‣ What’s a MST?

‣ How are they related?

‣ How are they different?

Single source shortest path

3

A

B

C

D

E

4

3

4

3

4
3

3

4

Draw next to each node the
cost of the shortest path from

A to that node

Shortest path

4

A

B

C

D

E

4

3

4

3

4
3

3

4

4 7

3 6

Shortest path

5

A

B

C

D

E

4

3

4

3

4
3

3

4

4 7

3 6

Shortest path

6

A

B

C

D

E

4

3

4

3

4
3

3

4

4 7

3 6

Minimum spanning tree

7

A

B

C

D

E

4

3

4

3

4
3

3

4

Draw the minimum spanning
tree of this graph

Minimum spanning tree

8

A

B

C

D

E

4

3

4

3

4
3

3

4

Distance from A to B in MST?

Distance from A to D in MST?

Dijkstra Pseudo-Code

9

function dijkstra(G, s):

 // Input: graph G with vertices V, and source s

 // Output: Nothing

 // Purpose: Decorate nodes with shortest distance from s

 for v in V:

 	 v.dist = infinity // Initialize distance decorations

 	 v.prev = null // Initialize previous pointers to null

 s.dist = 0 // Set distance to start to 0

 PQ = PriorityQueue(V) // Use v.dist as priorities

 while PQ not empty:

 u = PQ.removeMin()

 for all edges (u, v):	 //each edge coming out of u

 if u.dist + cost(u, v) < v.dist: // cost() is weight
 v.dist = u.dist + cost(u,v) // Replace as necessary
 v.prev = u 		 // Maintain pointers for path
 PQ.decreaseKey(v, v.dist)

Prim-Jarnik Pseudo-code

10

function prim(G):

 // Input: weighted, undirected graph G with vertices V

 // Output: list of edges in MST

 for all v in V:

 v.cost = ∞

 v.prev = null

 s = a random v in V // pick a random source s

 s.cost = 0

 MST = []

 PQ = PriorityQueue(V) // priorities will be v.cost values

 while PQ is not empty:

 v = PQ.removeMin()

 if v.prev != null:

 MST.append((v, v.prev))

 for all incident edges (v,u) of v such that u is in PQ:

 if u.cost > (v,u).weight:

 u.cost = (v,u).weight

 u.prev = v

 PQ.decreaseKey(u, u.cost)

 return MST

For the final…

11

‣ To study: look over homeworks, notes

‣ Rewrite definitions in your own words

‣ In answering questions:

‣ Be explicit and clear

‣ Convince us you understand!

What we’ve done this semester

12

‣ Analysis

‣ Big-O

‣ Worst-case analysis

‣ Amortized analysis

‣ Average-case analysis

‣ Social responsibility

What we’ve done this semester

13

‣ Data structures

‣ Dynamic stacks, queues, lists

‣ Hash tables

‣ Trees

‣ BSTs

‣ Heaps

‣ Graphs

What we’ve done this semester

14

‣ Algorithms

‣ Recursive

‣ Dynamic programming

‣ Searching trees and graphs

‣ Sorting

‣ Shortest paths

‣ MSTs

‣ Topological sort

What we’ve done this semester

15

‣ Other stuff

‣ Basics of machine learning

‣ Functional programming

‣ Hardness

‣ Program verification

Some advice

16

‣ Sometimes performance doesn’t matter

‣ Programs that will run once on small data

‣ Cases where n is always small

‣ When it does, focus on big-O first

‣ Then on smaller things (constant factors, language

choice, etc.)

Some advice

17

‣ Social responsibility: be prepared

‣ If you go on in CS (but really, regardless of what you

do) at some point you’ll have to make a choice

‣ Your boss asks you to implement something ethically

questionable

‣ You get a job offer from a company whose work conflicts

with your values

‣ Worth spending some time thinking about what
you’ll do

Some advice

18

‣ One reason to learn data structures and algorithms: try not to
reinvent the wheel

‣ You’re looking at a problem (for an independent class project, for
work, for research, etc.)

‣ Can this problem be represented as a graph?

‣ Would a priority queue be useful?

‣ Is this problem amenable to dynamic programming?

‣ Is this problem NP-complete?

‣ You might not remember the details of Dijkstra’s algorithm after this
semester

‣ But you’ll know it’s there when you need it!

