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1he World Wide Web

» Created by Tim-Berners Lee in 1989

» Collection of “pages”

» Pages are
» identified by Uniform Resource Locator (URL)

» composed of text & hyperlinks (pointers to
other pages)



Hypertext

» Hypertext and hyperlinks predate the WWW
»  Hypertext Editing System (HES) in 1967

» Ted Nelson, Andy van Dam + Brown students

» File Retrieval and Editing System (FRESS) in 1968

C—

» Andy van Dam + Brown students (including Bob Wallace)
» used In Brown's “Introduction to Poetry” in 1975 & 1976
» oN-Line System (NLS) in 1968

» Douglas Engelbart



Growth of the Web
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Growth of the Web
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Search Engines

»  TheWeb is great but how do find what we need!
P iE engine
» system that indexes collection of web pages

» returns relevant pages when queried with keyword(s)

» Q: how do we build a search engine?



Search Engines

» |ldea #1
» build a dictionary that maps keywords to URLs
» use hash tables or binary search trees (see Lecture 05)
» what's the problem with this approach!?
» some keywords will have too many URLs to check

» let's rank the pages by relevance!

» Q: how do we rank pages by relevance!?



search Engines 5> YaHoO!

altavista
» Rank by frequency

» build a dictionary that maps keywords to URLs

» use hash tables or binary search trees (see end of Lecture 05)

» store URLs ranked by the # of times keyword appears In page
» Q: s this a good idea!?

» Why or why not!

>



Search

» Rank by frequency

~NgiNes

YAaHOOO!

altavista

» build a dictionary that maps keywords to URLs
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Turtle

From Wikipedia, the free encyclopedia

For other uses, see Turtle (disambiguation).

ard

This article's lead section may not adequately summarize its

- contents. To comply with Wikipedia's lead section guidelines,

- please consider modifying the lead to provide an accessible
overview of the article's key points in such a way that it can stand
on its own as a concise version of the article. (January 2018)

Turtles are reptiles of the order Testudines characterized by
a special bony or cartilaginous shell developed from their ribs
and acting as a shield.[®] "Turtle" may refer to the order as a
whole (American English) or to fresh-water and sea-dwelling
testudines (British English).[4] The order Testudines includes
both extant (living) and extinct species. The earliest known
members of this group date from the Middle Jurassic,!"]
making turtles one of the oldest reptile groups and a more
ancient group than snakes or crocodilians. Of the 356 known
species(? alive today, some are highly endangered.!2]

Turtles are ectotherms—animals commonly called cold-
blooded—meaning that their internal temperature varies

war hosausca of

Turtles
Temporal range:
Middle Jurassic — Present,!!]

Aalenian-Holocene
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The Anatomy of a Large-Scale Hypertextual
Web Search Engine

Sergey Brin and Lawrence Page

Google

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey @cs .stanford.edu and page @cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of
use of the structure present in hypertext. Googl
and produce much more satisfying search resull
text and hyperlink database of at least 24 millio
To engineer a search engine is a challenging tas
millions of web pages involving a comparable 1
millions of queries every day. Despite the impo
very little academic research has been done on
technology and web proliferation, creating a we
years ago. This paper provides an in-depth desc
first such detailed public description we know ¢
traditional search techniques to data of this mag
with using the additional information present in
paper addresses this question of how to build a
additional information present in hypertext. Als
with uncontrolled hypertext collections where @

» Sergey Brin & Larry Page

v

PhD students doing research in information retrieval

v

noticed that links were important too!

-

inturtion that links conveyed information about importance

v

But what exactly! and how can you make use of links?



n10 n25
n8
n3
n19 no
nit
J n7
o 4
|
5 v
)
n39 4
n7

» How does PageRank work!?

» Why does it work?

» How do you implement it efficiently?

» Google indexes “hundreds of billions™ of pages
» answers and ranks in 0.5 seconds

» processes 40, 000 gueries a second

» 3.5 billion per day

» Using clever algorithms and data structures!

4 From Lecture Ol




[ he PageRank Algorithm

» Views WWW as a directed graph G=(V, E)
» web pages are the vertices

» hyperlinks are the edges

» High-level idea
» algorithm works by rounds
» think of the pagerank of a page as some amount of fluid

» at each round a page pushes its pagerank/fluid to the
pages It links to



The Basic PageRank Algorithm

» At every round
» each vertex splits its PR evenly among its outgoing edges
» each vertex receives PR from all its incoming edges
» this Is done using an update rule which Is run on every vertex

» The update rule for Basic PageRank is:

PR(u
il Z \outiug\
u€in(v)



Basic PagerRank: example |

Round 1




Basic PagerRank: example |
Round 2




Basic PagerRank: example |
Round 3




Basic PagerRank: example |
Round 4




Basic PagerRank: example |
Round 5




Basic PagerRank: example |
Round 6
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Basic PagerRank: example |

Round 7
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Basic PagerRank: example |
Round 8

.1875
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Basic PagerRank

» At Round 8
» B has pagerank .425

v

D has pagerank . 2

v

A has pagerank .1875

N

C has pagerank .1875

v

E has pagerank 0
» What happens If we keep going!

» does the ranking stabilize or will C have pagerank higher than D?
» can E end up with non-zero pagerank!?

» for certain graphs, if we keep going long enough pageranks will stabilize

s



Observations

» The sum of all pageranks always equals 1
» pagerank is moved around but never created or destroyed
» Pages with many incoming edges accumulate more pagerank (e.g., A, D)
» even better If incoming edges from pages with high pagerank (e.g., B)
» Pages with no incoming edges lose all their pagerank (e.g., E)
»  Inturtively
» the more a page is linked to, the higher its rank

» the more a page is linked to by high-ranked pages, the higher it ranks

s



Basic PagerRank

BasicPageRank (G, k): # k is number of “rounds”
for v in V:
v.rank = 1/|V|
for 1 from 1 to k:
for v in V:
v.prevrank = v.rank
for v in V:
v.rank = 0
for u in v.incoming:

v.rank = v.rank + u.prevrank/|u.outgoing|

» runtime of
> O(|V][+k(|V][+[E]))=0(|V]|+[E])
» assuming k Is a constant

e



Basic PageRank: Example 2

(8)—




Basic PageRank on

-xample 2

BasicPageRank (G, k):
for v in V:

1/|V]

for i from 1 to k:

v.rank =

for v in V:

v.prevrank = v.rank
for v in V:

v.rank = 0

for u in v.incoming:

# k is number of

v.rank = v.rank + u.prevrank/|u.outgoing|

“rounds"” ]<

|
w

O

T

Activity #1
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Basic PageRank: Example 2

Round 1

28



Basic PageRank: Example 2
Round 2

)



Basic PageRank: Example 2
Round 3

30



s going on!

VWhat



Basic PageRank: Example 2

» All the pagerank got trapped at B

» happens If graph has sinks (i.e., nodes w/ no outgoing edges)

517



Basic PageRank: Example 3
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Basic PageRank: Example 3
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Basic PageRank: Example 3
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Basic PageRank: Example 3
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Basic PageRank: Example 3
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» All the pagerank got trapped at C and D

B



Basic PagerRank

» Basic PageRank doesn't work for certain graphs
» e.g.graphs with sinks or with cycles with no outgoing edges
» all the pagerank gets trapped there

» How do we handle “rank traps™

»  Water flows down from high elevation to low elevation
» why doesn't all the water end up at the lowest points on Earth?
» because some of the water evaporates...

» ...and rains back down on the high elevation points

38



Handling Rank [raps

» Let's make some of the pagerank evaporate!
» We need a new update rule
» In basic update rule, nodes gave all their pagerank to neighbors
» In new update rule, a node will
» give a d fraction of its PR to its neighbors (split evenly)
» give a 1-d fraction of its PR to all npdes (split evenly)
» Including self + neighbors

» this guarantees that pagerank doesnft accumulate anywhere

» disusually setto .85  EAVIREEsETeIelcaiNidial Halele SRS

b5



Disappearing PageRank
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Disappearing PageRank

(1-d) /2 1/2
@ ’
» The sum of the pageranks does not sum to 1:

el d
e
2 2 o1

» since0 < d < 1

» We lost d/2 of B's pagerank when we updated

¢ivl



Handling Sinks

» There are several ways to handle sinks
» The simplest is to modify the graph as follows

» If v Is a sink, add an edge from v to every node In the graph

» This includes an edge from v to itself

» Then use the update rule we described on slide #38

i O



The Real PageRank Algorithm

» Add edges connecting every sink to every node
» At every round each vertex

» splits a d fraction of its PR evenly among its outgoing
edges

» splitsa (1-d) fraction of its PR evenly among all nodes

» receives PR from its incoming edges & from its share of
the “evaporated’ pageranks of all nodes

» d is called the damping factor & i1s usually set to . 85

(i



The Real PageRank Algorithm

» At every round the PR of each vertex v Is updated using:

d - PR(u) (1 —d) - PR(w)
PRw) = ) ¥
0= > o) * v
|. nodes with edges Y- e
e PR(u) 1—d
pointing to v — | d 1 : PR
. ( : \out<u>\> T 2
2. d fraction of u's PR u€in(v) ueV |
3. number of edges PR(u) 1—d I
: ket d b j| v
- ( uézm(v) \out(u)\) Vi .

4. (1-d) fraction of u's PR




[ he Real PageRank

» Runtime of around O( |E|)
» How many rounds should we run?
» |deally until the pageranks “stabilize”™
» pageranks stop changing even though we run more rounds
» We can prove that

» If we run for large enough number of rounds then
pageranks will stabilize

» that number could be very large for some graphs...

» ...but In practice it's usually reasonable

15



Alternative Sink Handling

» You can also handle sinks without modifying the graph

» but you need a slightly different update rule

e PR(u) PR(u)
B v 'd'( 2 outtw) )

u€in(v) uesinks(G)

46



PagerRank requirements

» Storage
» Need to store a copy of the entire web graph
» Google estimated to store about 50 billion web pages
» Average size of a page Is 2 MB
» ...that's about of 100 petabytes (1 PB = 250 bytes)!
» Hard to compute on such a large data set
» need to store data on clusters of 1000’s of machines
» need to coordinate all these machines to execute PageRank

» Google File System, MapReduce, BigTable, etc.

47



PageRank In Practice

» Google continually computes the pagerank of every webpage
» When you query

» your keyword narrows down the pages to return

» then Google ranks them by their precomputed pagerank

»  VWe don't know If Google still uses the original PageRank or
some variant

48



Other Applications of

4

PageRank Is also In other fields

>

>

>

Biology (studying protein interactions)

Page

Rank

Neuroscience (finding importance of brain regions)

Engineering (finding anomalies)
Mathematics (analyzing graphs)

Sports (ranking sports teams)

Literature (importance/influence of books)

Bibliometrics (which authors are more influential)

7



Readings

v

A Tilm from 1976 about Andy's FRESS system and its use In
Introduction to Poetry

» https://archive.org/details/ AndyVanDamHypertexthiim

v

The book Networks, Crowds and Markets by Easly and
Kleinberg has a great overview of PageRank

» the evaporation metaphor comes from there!

v

Other applications of PageRank
» https://arxiv.org/pdf/ 140/7.5107.pdf

Size of the web

N/

» http://www.worldwidewebsize.com

50



