PageRank

CS16: Introduction to Data Structures & Algorithms
Spring 2020

Outline

PYYTY TS

» The WWW & Search Engines

» Basic PageRank

» (Real) PageRank

» PageRank In practice

1he World Wide Web

» Created by Tim-Berners Lee in 1989

» Collection of “pages”

» Pages are
» identified by Uniform Resource Locator (URL)

» composed of text & hyperlinks (pointers to
other pages)

Hypertext

» Hypertext and hyperlinks predate the WWW
» Hypertext Editing System (HES) in 1967

» Ted Nelson, Andy van Dam + Brown students

» File Retrieval and Editing System (FRESS) in 1968

C—

» Andy van Dam + Brown students (including Bob Wallace)
» used In Brown's “Introduction to Poetry” in 1975 & 1976
» oN-Line System (NLS) in 1968

» Douglas Engelbart

Growth of the Web

O # of Websites
1,800,000,000

1,350,000,000
900,000,000

450,000,000

O
1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2020

Growth of the Web

O # of Websites
18,000,000

15,000,000
12,000,000
9,000,000
6,000,000

3,000,000

0 O O O O ' ; : '
1991 IUEZRRER 9938 994 = 1995 9968 s 199 7 i 9O ST GO U RN 0

Yahoo (2K) Google (2.4M)
Altavista (23K)

Search Engines

» TheWeb is great but how do find what we need!
P iE engine
» system that indexes collection of web pages

» returns relevant pages when queried with keyword(s)

» Q: how do we build a search engine?

Search Engines

» |ldea #1
» build a dictionary that maps keywords to URLs
» use hash tables or binary search trees (see Lecture 05)
» what's the problem with this approach!?
» some keywords will have too many URLs to check

» let's rank the pages by relevance!

» Q: how do we rank pages by relevance!?

search Engines 5> YaHoO!

altavista
» Rank by frequency

» build a dictionary that maps keywords to URLs

» use hash tables or binary search trees (see end of Lecture 05)

» store URLs ranked by the # of times keyword appears In page
» Q: s this a good idea!?

» Why or why not!

>

Search

» Rank by frequency

~NgiNes

YAaHOOO!

altavista

» build a dictionary that maps keywords to URLs

—accoozdioototbosmbiont onvizanont Ko

Turtle

From Wikipedia, the free encyclopedia

For other uses, see Turtle (disambiguation).

ard

This article's lead section may not adequately summarize its

- contents. To comply with Wikipedia's lead section guidelines,

- please consider modifying the lead to provide an accessible
overview of the article's key points in such a way that it can stand
on its own as a concise version of the article. (January 2018)

Turtles are reptiles of the order Testudines characterized by
a special bony or cartilaginous shell developed from their ribs
and acting as a shield.[®] "Turtle" may refer to the order as a
whole (American English) or to fresh-water and sea-dwelling
testudines (British English).[4] The order Testudines includes
both extant (living) and extinct species. The earliest known
members of this group date from the Middle Jurassic,!"]
making turtles one of the oldest reptile groups and a more
ancient group than snakes or crocodilians. Of the 356 known
species(? alive today, some are highly endangered.!2]

Turtles are ectotherms—animals commonly called cold-
blooded—meaning that their internal temperature varies

war hosausca of

Turtles
Temporal range:
Middle Jurassic — Present,!!]

Aalenian-Holocene

fan

pec €f@sp ¢ P I K pgﬂ

turt
turt
turt
turt
turt
turt
turt
turt
turt

e turt
e turt
e turt
e turt
e turt
e turt
e turt
e turt
e turt

e turt
e turt
e turt
e turt
e turt
e turt
e turt
e turt
e turt

e turt
e turt
e turt
e turt
e turt
e turt
e turt
e turt
e turt

e turt
e turt
e turt
e turt
e turt
e turt
e turt
e turt
e turt

@ ® @ ad d d D D @

The Anatomy of a Large-Scale Hypertextual
Web Search Engine

Sergey Brin and Lawrence Page

Google

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey @cs .stanford.edu and page @cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of
use of the structure present in hypertext. Googl
and produce much more satisfying search resull
text and hyperlink database of at least 24 millio
To engineer a search engine is a challenging tas
millions of web pages involving a comparable 1
millions of queries every day. Despite the impo
very little academic research has been done on
technology and web proliferation, creating a we
years ago. This paper provides an in-depth desc
first such detailed public description we know ¢
traditional search techniques to data of this mag
with using the additional information present in
paper addresses this question of how to build a
additional information present in hypertext. Als
with uncontrolled hypertext collections where @

» Sergey Brin & Larry Page

v

PhD students doing research in information retrieval

v

noticed that links were important too!

-

inturtion that links conveyed information about importance

v

But what exactly! and how can you make use of links?

n10 n25
n8
n3
n19 no
nit
J n7
o 4
|
5 v
)
n39 4
n7

» How does PageRank work!?

» Why does it work?

» How do you implement it efficiently?

» Google indexes “hundreds of billions™ of pages
» answers and ranks in 0.5 seconds

» processes 40, 000 gueries a second

» 3.5 billion per day

» Using clever algorithms and data structures!

4 From Lecture Ol

[he PageRank Algorithm

» Views WWW as a directed graph G=(V, E)
» web pages are the vertices

» hyperlinks are the edges

» High-level idea
» algorithm works by rounds
» think of the pagerank of a page as some amount of fluid

» at each round a page pushes its pagerank/fluid to the
pages It links to

The Basic PageRank Algorithm

» At every round
» each vertex splits its PR evenly among its outgoing edges
» each vertex receives PR from all its incoming edges
» this Is done using an update rule which Is run on every vertex

» The update rule for Basic PageRank is:

PR(u
il Z \outiug\
u€in(v)

Basic PagerRank: example |

Round 1

Basic PagerRank: example |
Round 2

Basic PagerRank: example |
Round 3

Basic PagerRank: example |
Round 4

Basic PagerRank: example |
Round 5

Basic PagerRank: example |
Round 6

.225

20

Basic PagerRank: example |

Round 7

21

Basic PagerRank: example |
Round 8

.1875

J5)

Basic PagerRank

» At Round 8
» B has pagerank .425

v

D has pagerank . 2

v

A has pagerank .1875

N

C has pagerank .1875

v

E has pagerank 0
» What happens If we keep going!

» does the ranking stabilize or will C have pagerank higher than D?
» can E end up with non-zero pagerank!?

» for certain graphs, if we keep going long enough pageranks will stabilize

s

Observations

» The sum of all pageranks always equals 1
» pagerank is moved around but never created or destroyed
» Pages with many incoming edges accumulate more pagerank (e.g., A, D)
» even better If incoming edges from pages with high pagerank (e.g., B)
» Pages with no incoming edges lose all their pagerank (e.g., E)
» Inturtively
» the more a page is linked to, the higher its rank

» the more a page is linked to by high-ranked pages, the higher it ranks

s

Basic PagerRank

BasicPageRank (G, k): # k is number of “rounds”
for v in V:
v.rank = 1/|V|
for 1 from 1 to k:
for v in V:
v.prevrank = v.rank
for v in V:
v.rank = 0
for u in v.incoming:

v.rank = v.rank + u.prevrank/|u.outgoing|

» runtime of
> O(|V][+k(|V][+[E]))=0(|V]|+[E])
» assuming k Is a constant

e

Basic PageRank: Example 2

(8)—

Basic PageRank on

-xample 2

BasicPageRank (G, k):
for v in V:

1/|V]

for i from 1 to k:

v.rank =

for v in V:

v.prevrank = v.rank
for v in V:

v.rank = 0

for u in v.incoming:

k is number of

v.rank = v.rank + u.prevrank/|u.outgoing|

“rounds"”]<

|
w

O

T

Activity #1

172412

Basic PageRank: Example 2

Round 1

28

Basic PageRank: Example 2
Round 2

)

Basic PageRank: Example 2
Round 3

30

s going on!

VWhat

Basic PageRank: Example 2

» All the pagerank got trapped at B

» happens If graph has sinks (i.e., nodes w/ no outgoing edges)

517

Basic PageRank: Example 3

.25 .25
- B
(&
25 \ & ’@ .25

Basic PageRank: Example 3

1/4 1/8 @1/4
L

1/4 1/8

1/4
178 \ & '@ 1/4

1/4

b2

Basic PageRank: Example 3

1/8 0
- B
@

1/8

762
12 \ & ’@ 3/8

23//ds

B8

Basic PageRank: Example 3

0 0
- B
(&)
1747,
12 \ & '@ 1/2

15/52

36

Basic PageRank: Example 3

0 0
< B
(8)
747
172 \ & '@ 12

1562

» All the pagerank got trapped at C and D

B

Basic PagerRank

» Basic PageRank doesn't work for certain graphs
» e.g.graphs with sinks or with cycles with no outgoing edges
» all the pagerank gets trapped there

» How do we handle “rank traps™

» Water flows down from high elevation to low elevation
» why doesn't all the water end up at the lowest points on Earth?
» because some of the water evaporates...

» ...and rains back down on the high elevation points

38

Handling Rank [raps

» Let's make some of the pagerank evaporate!
» We need a new update rule
» In basic update rule, nodes gave all their pagerank to neighbors
» In new update rule, a node will
» give a d fraction of its PR to its neighbors (split evenly)
» give a 1-d fraction of its PR to all npdes (split evenly)
» Including self + neighbors

» this guarantees that pagerank doesnft accumulate anywhere

» disusually setto .85 EAVIREEsETeIelcaiNidial Halele SRS

b5

Disappearing PageRank

- -
oiry S~

~ -
- -

40

Disappearing PageRank

(1-d) /2 1/2
@ ’
» The sum of the pageranks does not sum to 1:

el d
e
2 2 o1

» since0 < d < 1

» We lost d/2 of B's pagerank when we updated

¢ivl

Handling Sinks

» There are several ways to handle sinks
» The simplest is to modify the graph as follows

» If v Is a sink, add an edge from v to every node In the graph

» This includes an edge from v to itself

» Then use the update rule we described on slide #38

i O

The Real PageRank Algorithm

» Add edges connecting every sink to every node
» At every round each vertex

» splits a d fraction of its PR evenly among its outgoing
edges

» splitsa (1-d) fraction of its PR evenly among all nodes

» receives PR from its incoming edges & from its share of
the “evaporated’ pageranks of all nodes

» d is called the damping factor & i1s usually set to . 85

(i

The Real PageRank Algorithm

» At every round the PR of each vertex v Is updated using:

d - PR(u) (1 —d) - PR(w)
PRw) =) ¥
0= > o) * v
|. nodes with edges Y- e
e PR(u) 1—d
pointing to v — | d 1 : PR
. (: \out<u>\> T 2
2. d fraction of u's PR u€in(v) ueV |
3. number of edges PR(u) 1—d I
: ket d b j| v
- (uézm(v) \out(u)\) Vi .

4. (1-d) fraction of u's PR

[he Real PageRank

» Runtime of around O(|E|)
» How many rounds should we run?
» |deally until the pageranks “stabilize”™
» pageranks stop changing even though we run more rounds
» We can prove that

» If we run for large enough number of rounds then
pageranks will stabilize

» that number could be very large for some graphs...

» ...but In practice it's usually reasonable

15

Alternative Sink Handling

» You can also handle sinks without modifying the graph

» but you need a slightly different update rule

e PR(u) PR(u)
B v 'd'(2 outtw))

u€in(v) uesinks(G)

46

PagerRank requirements

» Storage
» Need to store a copy of the entire web graph
» Google estimated to store about 50 billion web pages
» Average size of a page Is 2 MB
» ...that's about of 100 petabytes (1 PB = 250 bytes)!
» Hard to compute on such a large data set
» need to store data on clusters of 1000’s of machines
» need to coordinate all these machines to execute PageRank

» Google File System, MapReduce, BigTable, etc.

47

PageRank In Practice

» Google continually computes the pagerank of every webpage
» When you query

» your keyword narrows down the pages to return

» then Google ranks them by their precomputed pagerank

» VWe don't know If Google still uses the original PageRank or
some variant

48

Other Applications of

4

PageRank Is also In other fields

>

>

>

Biology (studying protein interactions)

Page

Rank

Neuroscience (finding importance of brain regions)

Engineering (finding anomalies)
Mathematics (analyzing graphs)

Sports (ranking sports teams)

Literature (importance/influence of books)

Bibliometrics (which authors are more influential)

7

Readings

v

A Tilm from 1976 about Andy's FRESS system and its use In
Introduction to Poetry

» https://archive.org/details/ AndyVanDamHypertexthiim

v

The book Networks, Crowds and Markets by Easly and
Kleinberg has a great overview of PageRank

» the evaporation metaphor comes from there!

v

Other applications of PageRank
» https://arxiv.org/pdf/ 140/7.5107.pdf

Size of the web

N/

» http://www.worldwidewebsize.com

50

