Minimum Spanning Trees: Implementing Kruskal

CS16: Introduction to Data Structures & Algorithms
Spring 2020
Minimum Spanning Trees

- A **minimum spanning tree** (MST) is
 - spanning tree with minimum total edge weight
Kruskal’s Algorithm

- Sort edges by weight in ascending order
- For each edge in sorted list
 - If adding edge does not create cycle…
 - …add it to MST
- Stop when you have gone through all edges
edges = [(C, E), (D, F), (B, C), (E, F), (B, D), (A, B), (A, D), (B, E), (B, F)]
Kruskal

- How can we tell if adding edge will create cycle?
- Start by giving each vertex its own “cloud”
- If both ends of lowest-cost edge are in same cloud
 - we know that adding the edge will create a cycle!
- When edge is added to MST
 - merge clouds of the endpoints
Example

edges = [(C, E), (D, F), (B, C), (E, F), (B, D), (A, B), (A, D), (B, E), (B, F)]
Example

edges = [(D,F), (B,C), (E,F), (B,D), (A,B), (A,D), (B,E), (B,F)]
Example

edges = [(B,C), (E,F), (B,D), (A,B), (A,D), (B,E), (B,F)]
Example

edges = [(E,F), (B,D), (A,B), (A,D), (B,E), (B,F)]
Example

edges = [(B,D), (A,B), (A,D), (B,E), (B,F)]
Example

BD cannot be added because it would lead to a cycle

edges = [(A,B), (A,D), (B,E), (B,F)]
Example

edges = [(A, D), (B, E), (B, F)]
Example

edges = [(B,E), (B,F)]

AD cannot be added because it would lead to a cycle
Example

edges = [(B,F)]

BE cannot be added because it would lead to a cycle
Example

BF cannot be added because it would lead to a cycle

edges = []
function **kruskal**\((G) \):

\[
// \text{Input: undirected, weighted graph } G \\
// \text{Output: list of edges in MST} \\
\text{for vertices } v \text{ in } G: \\
\quad \text{makeCloud}(v) // \text{put every vertex into its own set} \\
\text{MST} = [] \\
\text{Sort all edges} \\
\text{for all edges } (u, v) \text{ in } G \text{ sorted by weight:} \\
\quad \text{if } u \text{ and } v \text{ are not in same cloud:} \\
\quad \quad \text{add } (u, v) \text{ to MST} \\
\quad \quad \text{merge clouds containing } u \text{ and } v \\
\text{return MST}
\]
Merging Clouds (Naive way)

- Assign each vertex a different number
 - that represents its initial cloud
- To merge clouds of u and v
 - Find all vertices in each cloud
 - Figure out which of the clouds is smaller
 - Redecorate all vertices in smaller cloud w/ bigger cloud’s number
Merging Clouds (Naive way)

- Finding all vertices in \(u \) & \(v \)'s clouds is \(O(|V|) \)
 - because we have to iterate through each vertex...
 - …and check if its cloud number matches \(u \) or \(v \)'s cloud number

- Figuring out smaller cloud is \(O(1) \)
 - as long as we keep track of cloud size as we find vertices in them

- Changing cloud numbers of nodes in smaller cloud is \(O(|V|) \)
 - because smallest cloud could be as big as \(|V|/2 \) vertices

- Total runtime to merge clouds
 - \(O(|V| + 1 + |V|) = O(|V|) \)
Runtime of Naive Kruskal

- Finding all vertices in \(u \) & \(v \)'s clouds is \(O(|V|) \)
 - because we have to iterate through each vertex…
 - …and check if its cloud number matches \(u \) or \(v \)'s cloud number
- Figuring out smaller cloud is \(O(1) \)
 - as long as we keep track of cloud size as we find vertices in them
- Changing cloud numbers of vertices in smaller cloud is \(O(|V|) \)
 - because cloud could be as big as \(|V|/2 \) vertices
- Merge Runtime
 - \(O(|V|) + O(1) + O(|V|) = O(|V|) \)
Runtime of Naive Kruskal

- Finding all vertices in \(u \) & \(v \)'s clouds is \(O(|V|) \)
 - because we have to iterate through each vertex…
 - …and check if its cloud number matches \(u \) or \(v \)'s cloud number
- Figuring out smaller cloud is \(O(1) \)
 - as long as we keep track of cloud size as we find vertices in them
- Changing cloud numbers of vertices in smaller cloud is \(O(|V|) \)
 - because cloud could be as big as \(|V|/2 \) vertices
- Merge Runtime
 - \(O(|V|) + O(1) + O(|V|) = O(|V|) \)
Runtime of Naive Kruskal

- Finding all vertices in \(u \) & \(v \)'s clouds is \(O(|V|) \)
 - because we have to iterate through each vertex...
 - ...and check if its cloud number matches \(u \) or \(v \)'s cloud number
- Figuring out smaller cloud is \(O(1) \)
 - as long as we keep track of cloud size as we find vertices in them
- Changing cloud numbers of vertices in smaller cloud is \(O(|V|) \)
 - because cloud could be as big as \(|V|/2 \) vertices
- Merge Runtime
 - \(O(|V|) + O(1) + O(|V|) = O(|V|) \)

Activity #4

1 min
Runtime of Naive Kruskal

- Finding all vertices in \(u \) & \(v \)'s clouds is \(O(|V|) \)
 - because we have to iterate through each vertex…
 - …and check if its cloud number matches \(u \) or \(v \)'s cloud number
- Figuring out smaller cloud is \(O(1) \)
 - as long as we keep track of cloud size as we find vertices in them
- Changing cloud numbers of vertices in smaller cloud is \(O(|V|) \)
 - because cloud could be as big as \(|V|/2 \) vertices
- Merge Runtime
 \[O(|V|) + O(1) + O(|V|) = O(|V|) \]

Activity #4

0 min
Kruskal Runtime w/ Naive Clouds

function kruskal(G):
 // Input: undirected, weighted graph G
 // Output: list of edges in MST
 for vertices v in G:
 makeCloud(v)
 MST = []
 Sort all edges
 for all edges (u,v) in G sorted by weight:
 if u and v are not in same cloud:
 add (u,v) to MST
 merge clouds containing u and v
 return MST

- \(O(|V|) \)
- \(O(|E|) \)
- \(O(|E| \log |E|) \)
Naive Kruskal Runtime

- $O(|V|)$ for iterating through vertices
- $O(|E| \log |E|)$ for sorting edges
- $O(|E| \times |V|)$ for iterating through edges and merging clouds naively
- $O(|V| + |E| \log |E| + |E| \times |V|)$
 - $= O(|E| \times |V|) = O(|V|^2 \times |V|) = O(|V|^3)$
- Can we do better?

since $|E| \leq |V|^2$
Union-Find

- Let's rethink notion of clouds
 - instead of labeling vertices w/ cloud numbers
 - think of clouds as small trees
- Every vertex in these trees has
 - a parent pointer that leads up to root of the tree
 - a rank that measures how deep the tree is
Example

edges = [(C, E), (D, F), (B, C), (E, F), (B, D), (A, B), (A, D), (B, E), (B, F)]
edges = [(D, F), (B, C), (E, F), (B, D), (A, B), (A, D), (B, E), (B, F)]
Example

edges = [(B,C), (E,F), (B,D), (A,B), (A,D), (B,E), (B,F)]
Example

\[\text{edges} = [(E, F), (B, D), (A, B), (A, D), (B, E), (B, F)] \]
edges = [(B,D), (A,B), (A,D), (B,E), (B,F)]
Example

edges = [(A,D), (B,E), (B,F)]
edges = [(A,D), (B,E), (B,F)]
Implementing Union-Find

- At start of Kruskal
 - every node is put into own cloud

```plaintext
// Decorates every vertex with its parent ptr & rank
function makeCloud(x):
  x.parent = x
  x.rank = 0
```
Implementing Union-Find

- Suppose A is in cloud 1 and B is in cloud 2
- Instead of relabeling B as cloud 1 make B point to A
 - Think of this as the union of two clouds

- Given two clouds which one should point to the other?
Implementing Union-Find

- We use the rank to decide
 - make lower-ranked root point to higher-ranked root
 - then update rank
- How do we update ranks?
 - For clouds of size 1 root always has rank 0
 - For clouds of size larger than 1 we increment rank only when merging clouds of same rank
Implementing Union-Find

- Merging trees with same rank
Implementing Union-Find

- Merging trees with same rank
Implementing Union-Find

- Merging trees with different ranks

![Diagram](image)
Implementing Union-Find

- Merging trees with different ranks
// Merges two clouds, given the root of each cloud
function union(root1, root2):
 if root1.rank > root2.rank:
 root2.parent = root1
 elif root1.rank < root2.rank:
 root1.parent = root2
 else:
 root2.parent = root1
 root1.rank++
Implementing Union-Find

- To find the cloud of B
 - follow B’s parent pointer all the way up to root

```python
// Finds the cloud of a given vertex
function find_root(x):
    while x.parent != x:
        x = x.parent
    return x
```
Path Compression

- This approach to implementing `find` runs in $O(\log |V|)$
- Not obvious to see why and proof beyond CS16
- We can bring this down to amortized $O(1)\ast$
 - with path compression...
 - ...a way of flattening the structure of the tree...
 - ...whenever `find()` is used on it
Path Compression

- Instead of traversing up tree every time D's cloud is asked for
 - We only search for D's root once
 - As we follow chain of parents to A we set parents of D & C to A

\[O(\log |V|) \]

Amortized \[O(1) \]
Path Compression Pseudo-code

```
function find_root(x):
    if x.parent != x:
        x.parent = find_root(x.parent)
    return x.parent
```
Runtime of Kruskal w/ Path Compression

Activity #5

1 min
Runtime of Kruskal w/ Path Compression

Activity #5
Runtime of Kruskal w/ Path Compression

Activity #5
Runtime of Kruskal w/ Path Compression

function `kruskal(G):`

// Input: undirected, weighted graph G
// Output: list of edges in MST

for vertices v in G:
 makeCloud(v)

MST = []
Sort all edges
for all edges (u,v) in G sorted by weight:
 if u and v are not in same cloud:
 add (u,v) to MST
 merge clouds containing u and v
return MST

\[O(|V|) \]

\[O(|E| \log |E|) \]

\[O(|E|) \]

\[O(1) \] amortized
Kruskal Runtime

- $O(|V|)$ for iterating through vertices
- $O(|E| \log |E|)$ for sorting edges
- $O(|E| \times 1)$ for iterating through edges and merging clouds with path compression
- $O(|V| + |E| \log |E| + |E| \times 1)$
 - $= O(|V| + |E| \log |E|)$
- $O(|V| + |E| \log |E|)$ better than $O(|V|^3)$
Prim’s and Kruskal’s

- Why learn two algorithms?
 - Two very different approaches for the same problem
 - MSTs are a basic building block, have been object of study for years
 - (like sorting)

- When to use?
 - Kruskals: dominated by sorting, use when already have sorted edges
 - Prim's: better on dense graphs
Readings

- Dasgupta Section 5.1
 - Explanations of MSTs
 - and both algorithms discussed in this lecture