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Spanning Irees

» A spanning tree of a graph Is

» edge subset forming a tree that spans every vertex




Minimum Spanning Irees

» A minimum spanning tree (MST) is

» spanning tree with minimum total edge weight
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» Facial recognition

» Handwriting recognition

» Image segmentation

» Low-density parity check codes (LDPC)



Minimum Spanning Tree Algos

» Prim-Jarnik Algorithm
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The basic problem considered is that of interconnecting a given sel of
terminals with a shortest possible network of direct links. Simple and prac-
tical procedures are given for solving this problem both graphically and
computationally. It develops that these procedures also provide solutions
for a much broader class of problems, containing other examples of practical
interest.




Minimum Spanning Tree Algos

» Kruskal's algorithm (1956)

ON THE SHORTEST SPANNING SUBTREE OF A GRAPH
AND THE TRAVELING SALESMAN PROBLEM

JOSEPH B. KRUSKAL, JR.

Several years ago a typewritten translation (of obscure origin) of
[1] raised some interest. This paper is devoted to the following
theorem: If a (finite) connected graph has a positive real number
attached to each edge (the length of the edge), and if these lengths
are all distinct, then among the spanning' trees (German: Geriist)
of the graph there is only one, the sum of whose edges is a mini-
mum; that is, the shortest spanning tree of the graph is unique.
(Actually in [1] this theorem is stated and proved in terms of the
“matrix of lengths” of the graph, that is, the matrix ||a;;|| where a.;
is the length of the edge connecting vertices ¢ and j. Of course, it is
assumed that a;; =a;; and that a;;=0 for all 7 and j.)

The proof in [1] is based on a not unreasonable method of con-
structing a spanning subtree of minimum length. It is in this con-
struction that the interest largely lies, for it is a solution to a prob-
lem (Problem 1 below) which on the surface is closely related to one
version (Problem 2 below) of the well-known traveling salesman
problem.




Minimum Spanning Tree Algos

» Karger-Klein-Tarjan (1995)

A Randomized Linear-Time Algorithm
to Find Minimum Spanning Trees

DAVID R. KARGER
Stanford University, Stanford, California

PHILIP N. KLEIN

Brown University, Providence, Rhode Island
AND
ROBERT E. TARJAN

Pninceton University and NEC Research Institute, Princeton, New Jersey

Abstract. We present a randomized linear-time algorithm to find a minimum spanning tree in a
connected graph with edge weights. The algorithm uses random sampling in combination with a
recently discovered linear-time algorithm for verifying a minimum spanning tree. Our computa-
tional model is a unit-cost random-access machine with the restriction that the only operations
allowed on edge weights are binary comparisons.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexityl:
Nonnumerical Algorithms and Problems—computations on discrete structures; G.2.2 [Discrete
Mathematicsl: Graph Theory—graph algorithms, network problems, trees: G.3 [Probability and
Statistics]: probabilistic algorithms (including Monte Carlo); 1.5.3 [Pattern Recognition]: Clustering

General Terms: Algorithms

Additional Key Words and Phrases: Matroid, minimum spanning tree, network, randomized
algorithm




Prim-Jarnik Algorithm

» [raverse G starting at any node
» Maintain priority queue of nodes

» set priority to weight of the cheapest edge that connects
them to MST

» Un-added nodes start with priority oo

» At each step
» Add the node with lowest cost to MST

» Update (“relax’”) neighbors as necessary

» Stop when all nodes added to MST

5]



-Xample

Random node
set to cost O
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£ Dequeue from PQ
and update neighbors

PQ = [(4,D),(4,F)]
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’seudo-code

function prim(G):
// Input: weighted, undirected graph G with vertices V
// Output: list of edges in MST
for all v in V:
v.cost = ®
v.prev = null
s = a random v in V // pick a random source s
s.cost = 0
MST = []
PQ = PriorityQueue(V) // priorities will be v.cost values
while PQ is not empty:
v = PQ.removeMin/()
if v.prev != null:
MST.append( (v, v.prev))
for all incident edges (v,u) of v such that u is in PQ:
if u.cost > (v,u).weight:
u.cost = (v,u).weight
u.prev = v
PQ.decreaseKey(u, u.cost)
return MST

K



Simulate Prim-Jarnik

function prim(G):
// Input: weighted, undirected graph G with vertices V
// Output: list of edges in MST
for all v in V:

v.cost = ®
v.prev = null
s = a random v in V // pick a random source s

s.cost = 0
MST = []
PQ = PriorityQueue(V) // priorities will be v.cost values
while PQ is not empty:
v = PQ.removeMin()
if v.prev != null: //guarantees we don’t add (s, s.prev)
MST.append( (v, v.prev))
for all incident edges (v,u) of v such that u is in PQ:
if u.cost > (v,u).weight:
u.cost = (v,u).weight
u.prev = v
PQ.decreaseKey(u, u.cost)

return MST
L? .

Activity #I



Simulate Prim-Jarnik

function prim(G):
// Input: weighted, undirected graph G with vertices V
// Output: list of edges in MST
for all v in V:

v.cost = ®
v.prev = null
s = a random v in V // pick a random source s

s.cost = 0
MST = []
PQ = PriorityQueue(V) // priorities will be v.cost values
while PQ is not empty:
v = PQ.removeMin()
if v.prev != null: //guarantees we don’t add (s, s.prev)
MST.append( (v, v.prev))
for all incident edges (v,u) of v such that u is in PQ:
if u.cost > (v,u).weight:
u.cost = (v,u).weight
u.prev = v
PQ.decreaseKey(u, u.cost)

return MST
L? .

Activity #I



Simulate Prim-Jarnik
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function prim(G):
// Input: weighted, undirected graph G with vertices V

// Output: list of edges in MST
for all v in V:

v.cost = ®
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s = a random v in V // pick a random source s
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return MST
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Simulate Prim-Jarnik
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Runtime of Prim-Jarnik
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Runtime of Prim-Jarnik

2 o Activity #2




Runtime of Prim-Jarnik
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Runtime of Prim-Jarnik
Activity #2
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Runtime Analysis

v

Decorating nodes with distance and previous pointers is O ( | V] )

v

Putting nodes in PQ is O( | V| log|V]|) (really O( |V]) since oo priorities)

v

While loop runs |V | times
» removing vertex from PQ is 0 (log|V]|)

» S0 0(|V]log|V])

D

For loop (in while loop) runs |E | times in total
» Replacing vertex’s key in the PQ is log | V|
» S0 O(|E|log|V])

Overall runtime

v

»O(|V| + |V]|log|V| + |V|log|V| + |E|log]|V])
»= O((|E| + |V])log]|V])

28



Proof of Correctness

» Common way of proving correctness of greedy algos
» show that algorithm is always correct at every step

» Best way to do this I1s by induction

» tricky part is coming up with the right invariant

)



Inductive invariant for Prim

» Want an invariant P(n), where n is number of
edges added so far

PRINEEERTO have:
» P(0) [base case]
» P(n) mpliesP(n + 1) [inductive case]

» P(size of MST) implies correctness

30



Inductive invariant for Prim

» Want an invariant P(n), where n is number of
edges added so far

» Need to have:
» P(0) [base case]
» P(n) mpliesP(n + 1) [inductive case]
» P(size of MST) implies correctness

» P(n)=first n edges added by Prim are a
subtree of some MST

31



Graph Cuts

» A cut is any partition of the vertices into two groups

b

» Here G Is partitioned in 2

» with edges b and a joining the partitions

57



Proof of Correctness

* P(n)

» first n edges added by Prim are a subtree of some MST

» Base case when n=0

» no edges have been added yet so P(0) s trivially true

» Inductive Hypothesis

» first k edges added by Prim form a tree T which is subtree of some MST M

IH

T

M

DY



Proof of Correctness

» Inductive Step
» Let e be the (k+1)th edge that is added
» e will connect T (green nodes) to an unvisited node (one of blue nodes)

» We need to show that adding e to T
» forms a subtree of some MST M’

» (which may or may not be the same MST as M)

1 “
@

4
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Proof of Correctness

» Two cases
» e s in original MST M
» eisnotin M
» Case l:eisinM
» there exists an MST that contains first k+1 edges
» So P(k+1) is true!

> O
e.‘
O
O
35




Proof of Correctness

» (Case 2:eisnotin M
» if we add e=(u,Vv) to Mthen we get a cycle
» why! since M Is span. tree there must be path from u to v w/o e

» so there must be another edge e’ that connects T to unvisited nodes

IH
M

b
7
L

» We know e.weight = e’ .weight because Prim chose e first

36



Proof of Correctness

» Soif we add e to M and remove e’

» we getanew MST M’ that is no larger than M and contains T & e

M’

“\\ %

» P(k+1) Istrue

» because M’ is an MST that contains the first k+1 edges added
by Prim’s

7



Proof of Correctness

» Since we have shown
» P(0) s true

» P(k+1) istrue assuming P (k) Is true (for both
cases)

» The first n edges added by Prim form a subtree of
seinfE ISk

38
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Kruskal's Algorithm

» Sort edges by welight In ascending order

» For each edge In sorted list

» It adding edge does not create cycle...

e tto MST

» Stop when you have gone through all edges

40



edges = [(C,E), (D,F), (B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

¢ivl



Simulate Kruskal
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Simulate Kruskal
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Simulate Kruskal

Activity #3
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Simulate Kruskal

Activity #3
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Kruskal

» How can we tell It adding edge will create cycle!
» Start by giving each vertex its own “cloud”

» It both ends of lowest-cost edge are In same
cloud

» we know that adding the edge will create a cycle!

» When edge Is added to MST

» merge clouds of the endpoints

46



edges = [(C,E), (D,F), (B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

i



edges

[(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

48



edges = [(B,C), (E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

i



edges = [(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

50



Example
[ 1 C
5 ) o

o e

edges = [(B,D),(A,B),(A,D),(B,E), (B,F)]

5



BD cannot be added
because it would lead
to a cycle

edges = [(A,B),(A,D),(B,E),(B,F)]

57



Example
O o e
o e

edges = [(A,D),(B,E),(B,F)]

i



AD cannot be added
because it would lead
to a cycle

edges = [(B,E), (B,F)]

g



BE cannot be added
because it would lead
to a cycle

edges = [(B,F)]

55



BF cannot be added
because it would lead
to a cycle




Kruskal Pseudo-Code

function kruskal(G):
// Input: undirected, weighted graph G
// Output: list of edges in MST
for vertices v in G:
makeCloud(v) // put every vertex into it own set
MST = []
Sort all edges
for all edges (u,v) in G sorted by weight:
if u and v are not in same cloud:
add (u,v) to MST
merge clouds containing u and v
return MST

57/



Merging Clouds (Naive way)

» Assign each vertex a different number

» that represents its inrtial cloud

» Jo merge clouds of u and v
» Find all vertices In each cloud

» Figure out which of the clouds is smaller

» Redecorate all vertices in smaller cloud w/ bigger
cloud's number

58



Merging Clouds (Naive way)

v

Finding all vertices in u & v's clouds is O( |V ] )
» because we have 1o iterate through each vertex. ..

» ...and check If its cloud number matches u or v's cloud number

NS

Figuring out smaller cloud 1Is O (1)

» as long as we keep track of cloud size as we find vertices in them

v

Changing cloud numbers of nodes in smaller cloud is O( |V ] )

» because smallest cloud could be as bigas | V| /2 vertices

v

Total runtime to merge clouds

ROEWIE+ 1 + (V]) = O(|V])

515



Runtime of Naive Kruskal

v

Finding all vertices in u & v's clouds is O ( |V | )
» because we have to iterate through each vertex...

» ...and check if its cloud number matches u or v's cloud number

%

Figuring out smaller cloud is O (1)

» as long as we keep track of cloud size as we find vertices in them

v

Changing cloud numbers of vertices in smaller cloud is O ( |V | )

» because cloud could be as big as | V| /2 vertices

v

Merge Runtime

> @ [57] 1 =h @il SsEE R S A

2 o Activity #4



Runtime of Naive Kruskal

v
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» as long as we keep track of cloud size as we find vertices in them

v

Changing cloud numbers of vertices in smaller cloud is O ( |V | )

» because cloud could be as big as | V| /2 vertices

v

Merge Runtime

> @ [57] 1 =h @il SsEE R S A

2 o Activity #4



Runtime of Naive Kruskal

v

Finding all vertices in u & v's clouds is O ( |V | )
» because we have to iterate through each vertex...

» ...and check if its cloud number matches u or v's cloud number

%

Figuring out smaller cloud is O (1)

» as long as we keep track of cloud size as we find vertices in them

v

Changing cloud numbers of vertices in smaller cloud is O ( |V | )

» because cloud could be as big as | V| /2 vertices

v

Merge Runtime

> @ [57] 1 =h @il SsEE R S A

Activity #4
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Runtime of Naive Kruskal

v

Finding all vertices in u & v's clouds is O ( |V | )
» because we have to iterate through each vertex...

» ...and check if its cloud number matches u or v's cloud number

%

Figuring out smaller cloud is O (1)

» as long as we keep track of cloud size as we find vertices in them

v

Changing cloud numbers of vertices in smaller cloud is O ( |V | )

» because cloud could be as big as | V| /2 vertices

v

Merge Runtime

> @ [57] 1 =h @il SsEE R S A

Activity #4
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Kruskal Runtime w/ Naive Clouds

function kruskal(G):
// Input: undirected, weighted graph G
// Output: list of edges in MST

for vertices v in G: <«
makeCloud(v)
MST = []

Sort all edges <«

o(|v])

O(|E|log|E|)

for all edges (u,v) in G sorted by weight: «
if u and v are not in same cloud:
add (u,v) to MST

O(|E]|)

merge clouds containing u and v <
return MST

64
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Kruskal Runtime

» O(|V

» O(|E

) for rterating through vertices

log|E|) for sorting edges

» O(|E|x]|V]) for iterating through edges and
merging clouds naively

» O(|V|+|E|log|E|+|E|x]|V])

» = O(|E|x|V]|) = o(|V]|2x|V])= O(|V]3)

» Can we do better?

since |E| < |V|?

65



Union-Find

» Let's rethink notion of clouds
» Instead of labeling vertices w/ cloud numbers
» think of clouds as small trees

» bvery vertex In these trees has

» a parent pointer that leads up to root of the tree

» a rank that measures how deep the tree Is

66



edges = [(C,E), (D,F), (B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

67/



edges

[(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

68



edges = [(B,C), (E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

69



edges = [(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

70



edges = [(B,D),(A,B),(A,D),(B,E), (B,F)]

74



Example
10 o e
o e

edges = [(A,D),(B,E),(B,F)]

i



Example
oo °
o e

edges = [(A,D),(B,E),(B,F)]

7



Implementing Union-Fina

» At start of Kruskal

» every node Is put into own cloud

// Decorates every vertex with its parent ptr & rank
function makeCloud(x):

X.parent = X

x.rank = 0

0

0
PORP O

74



Implementing Union-Fina

» Suppose A s in cloud 1 and B is in cloud 2

» Instead of relabeling B as cloud 1 make B point to A

» Think of this as the union of two clouds

@ elc @loldRZ

(B—
<> >

» Given two clouds which one should point to the other?

745



Implementing Union-Fina

» We use the rank to decide
» make lower-ranked root point to higher-ranked root
» then update rank

» How do we update ranks!

» For clouds of size 1 root always has rank 0

» For clouds of size larger than 1 we increment rank
only when merging clouds of same rank

76



Implementing Union-Fina

» Merging trees with same rank

1 1

pe.. 2%
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Implementing Union-Fina
» Merging trees with same rank

2
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Implementing Union-Fina

» Merging trees with different ranks

1 0

@\O O,

® 00O

i



Implementing Union-Fina

» Merging trees with different ranks




Implementing Union-Fina

// Merges two clouds, given the root of each cloud
function union(rootl, root2):

if rootl.rank > root2.rank:
root2.parent = rootl
elif rootl.rank < root2.rank:

rootl.parent = root2
else:

root2.parent
rootl.rank++

rootl

8l



Implementing Union-Fina

» To find the cloud of B

» follow B's parent pointer all the way up to root

// Finds the cloud of a given vertex
function find_ root(x):
while x.parent != x:
X = X.parent

return x

1 0

=
<>

82



Path Compression

» [his approach to implementing £ind runs in
» O(log|V])
» not obvious to see why and proof beyond CS16
» VWe can bring this down to amortized O(1)
» with path compression...
» ...a way of flattening the structure of the tree...

» ...whenever £ind () Is used on It

83



Path Compression

» Instead of traversing up tree every time D's cloud is asked for
» We only search for D's root once

» As we follow chain of parents to A we set parents of D & C to A
v
V'

/
Amortized O(1)

(©)

/
@ O(log|V])

e R e



Path Compression Pseudo-code

function find_root(x):
if x.parent != x:
x.parent = find root(x.parent)

return x.parent

85



Runtime of Kruskal w/ Path Compression

Activity #5
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Runtime of Kruskal w/ Path Compression
Activity #5
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Runtime of Kruskal w/ Path Compression

function kruskal(G):
// Input: undirected, weighted graph G
// Output: list of edges in MST

for vertices v in G: <«
makeCloud(v)
MST = []

o(|v])

O(|E|log|E|)

Sort all edges <«

for all edges (u,v) in G sorted by weight: «
if u and v are not in same cloud:
add (u,v) to MST

O(|E]|)

merge clouds containing u and v <
return MST

89
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Kruskal Runtime

>O(

» O

V

E

) for rterating through vertices

log|E|) for sorting edges

» O(|E|x1) for iterating through edges and
merging clouds with path compression

» O(|V|[+|E|log|E|+|E|x1)

4

O(|V[+|E|log|E]|)

» O(|V|+]|E|log|E|) better than o(|V|3)

90



Readings

» Dasgupta Section 5. |
» Explanations of MSTs

» and both algorithms discussed In this lecture
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