
Special topic:
Functional Programming

CS16: Introduction to Data Structures & Algorithms
Summer 2021

Functional Programming Paradigm
‣ A style of building the structure and elements of

computer programs that treats computation as
the evaluation of mathematical functions.

‣ Programs written in this paradigm rely on
smaller methods that do one part of a larger
task. The results of these methods are combined
using function compositions to accomplish the
overall task.

2

What are functions ?
‣ Takes in an input and always returns an output
‣ A given input maps to exactly one output
‣ Examples:
‣ In math:
‣ In python:

3

def f(x):
return x + 1

f(x) = x + 1

What is State ?

4

‣ All stored information to which a program has
access to at any given point in time

‣ How can a program’s state change ?
‣ Mutable data is data that can be changed after creation.

Mutating data changes program state.
‣ Mutator methods (i.e. setters…)

‣ Changing local variables (i.e. int x= 1; x = 2)

‣ Immutable data is data that cannot be changed after
creation. In a program with only immutable data, there’s no
state that needs to be tracked

State changes
‣ In a stateful program, the same method could behave

differently depending upon the state of the program
when it was called

‣ Let’s look at an example of a stateful program.
‣ Our example is a short program that simulates driving

behavior based on the color of the stoplight.

5

6

light_color = “RED”

def change_light():
if light_color == “RED”:
light_color = “YELLOW”

elif light_color == “YELLOW”:
light_color == “GREEN”

elif light_color == “GREEN”:
light_color = “RED”

def drive(car):
if light_color == “RED”:
car.stop()

elif light_color == “YELLOW”:
car.slow_down()

elif light_color == “GREEN”:
car.move_forward()

State in Functional Programs
‣ In pure functional languages, all data is immutable and

the program state cannot change.
‣ What are the implications of this property ?
‣ Functions are deterministic i.e. the same input will

always yield the same output. This makes it easier to
re-use functions elsewhere.

‣ The order of execution of multiple functions does
not affect the final outcome of the program.

‣ Programs don’t contain any side effects.

7

Mutable vs Immutable State
‣ Consider these two programs

8

Program 1 Program 2

 a = f(x)
 b = g(y)
 return h(a,b)

 b = g(y)
 a = f(x)
 return h(a,b)

‣ Will they return the same result if the state is mutable ?
‣ What about when the state is immutable ?

9

Mutable vs Immutable State

‣Mutable State: Not guaranteed to give the same results because:
‣ The first function call might have changed state.
‣ Thus, the second function call might behave differently.
‣ This is an example of a side effect.

‣ Immutable State: Guaranteed to output the same result for the same
inputs!

Program 1 Program 2

 a = f(x)
 b = g(y)
 return h(a,b)

 b = g(y)
 a = f(x)
 return h(a,b)

State and Loops
for int i = 0; i < len(L); i++:

 print L[i]

The local variable i is being mutated!

‣ If we can’t mutate state - we can’t use our usual
for and while loop constructs!

‣ Instead, functional languages make use of recursion

10

State and Loops (cont’d)
‣ Which variables are being mutated in this example ?

def max(L):

 max_val = L[0]

 for i in range(0, len(L)):

 if L[i] > max_val:

 max_val = L[i]

 return max_val

11

State and Loops (cont’d)
‣ What variables are being mutated in this example ?

def max(L):

 max_val = L[0]

 for i in range(0, len(L)):

 if L[i] > max_val:

 max_val = L[i]

 return max_vali is being
mutated!

max_val is
being mutated!

‣ How do we write this function without mutation … ?

12

Replacing Iteration with Recursion
Iterative Max Recursive Max

def max(L):
 max_val = L[0]
 for i in range(0, len(L)):
 if L[i] > max_val:
 max_val = L[i]
 return max_val

def max(L):
 return max_helper(L, L[0])

def max_helper(L, max_val):
 if len(L) == 0:
 return max_val
 if L[0] > max_val:
 return max_helper(L[1:], L[0])
 return max_helper(L[1:], max_val)

The recursive version never mutates state!

13

First Class Functions
‣ In the functional paradigm, functions are treated just like other

values! They can be:
‣ Passed as arguments to other functions
‣ Returning them as values from other functions
‣ Storing them in variables just like other data-types

14

def add_one(x):

return x + 1

def apply_func_to_five(f):

return f(5)

print apply_func_to_five(add_one)

>>> 6

First Class Functions (cont’d)
‣What’s actually happening in our definition of the

add_one function ?
def add_one(x):

return x + 1

‣We’re binding a function to the identifier
add_one
‣ In python, this is equivalent to

add_one = lambda x: x+1

function identifier python keyword argument passed
to the function

return value of
the function

15

Anonymous Functions
‣ Data types such as numbers, strings, booleans etc. don’t need to

be bound to a variable. Similarly, neither do functions!
‣ An anonymous function is a function that is not bound to an

identifier.
‣ A python example of an anonymous function is lambda x: x + 1
‣ An example of a function that returns an anonymous function:

16

Input: A number k

Output: A function that increments k by the number passed into it

def increment_by(k):

return lambda x: x + k

Lambda practice

17

Write an anonymous function that raises a single
argument ’n’ to the nth power

Lambda practice

18

Write an anonymous function that raises a single
argument ’n’ to the nth power

Solution:
lambda n: n**n

Higher Order Functions
‣ A function is a higher-order function if it either takes in

one or more functions as parameters and/or returns a
function.

‣ You’ve already seen examples of higher-order functions in
the previous slides!

19

Input: A number k

Output: A function that increments k by the number passed into it

def increment_by(k):

return lambda x: x + k

print apply_func_to_five(add_one)
>>> 6

Input: A number x

Output: A function that adds the number passed in to x

def add_func(x):

return lambda y: x + y

we pass in 1 as the value of ‘x’

>>> add_one = add_func(1)

add_one holds the function object returned by calling add_func

>>> print add_one

<function <lambda> at 0x123e410>

‘5’ is the value of the parameter ‘y’ in the function
add_one which is lambda y: 1 + y

>>> print add_one(5)
6

Using Higher Order Functions

20

Map
‣Map is a higher order function with the following

specifications:
‣ Inputs
‣ f - a function that takes in an element
‣ L - a list of elements

‣Output
‣A new list of elements, with f applied to each

of the elements of L

21

22

Map example

9

7

22

-7

32

2

11

9

24

-5

34

4

list(map(lambda x: x-2, [11,9,24,-5,34,4]))

Reduce

23

‣Reduce is also a higher-order function.
‣ It reduces a list of elements to one element using a binary

function to successively combine the elements.
‣ Inputs
‣ f - a binary function
‣ L - list of elements
‣ acc - accumulator, the parameter that collects the

return value
‣Output
‣ The value of f sequentially applied and tracked in ‘acc’

Reduce

24

‣ Reduce is roughly equivalent in functionality to
this python function:

def reduce(binary_func, elements, acc):

for element in elements:

 acc = binary_func(acc, element)

return acc

Reduce Example

25

in Python, need to import reduce

from functools import reduce

binary function ‘add’

add = lambda x, y: x + y

use ‘reduce’ to sum a list of numbers

>>> print reduce(add, [1,2,3], 0)

6

binary function collection of
elements

accumulator

Reduce Example

26

add = lambda x, y: x + y

reduce(add, [1,2,3], 0)

Math Python
((0 + 1) + 2) + 3) = ? reduce(add, [1,2,3], 0) = ?

current accumulator current accumulator

Reduce Example (cont’d)

27

Math Python
((0 + 1) + 2) + 3) = ?

((1 + 2) + 3) = ?

reduce(add, [1,2,3], 0) = ?

reduce(add, [2,3], 1) = ?

current accumulator current accumulator

27

add = lambda x, y: x + y

reduce(add, [1,2,3], 0)

Reduce Example (cont’d)

28

Math Python
((0 + 1) + 2) + 3) = ?

((1 + 2) + 3) = ?

(3 + 3) = ?

reduce(add, [1,2,3], 0) = ?

reduce(add, [2,3], 1) = ?

reduce(add, [3], 3) = ?

add = lambda x, y: x + y

reduce(add, [1,2,3], 0)

current accumulator current accumulator

Reduce Example (cont’d)

29

add = lambda x, y: x + y

reduce(add, [1,2,3], 0)

Math Python
((0 + 1) + 2) + 3) = ?

((1 + 2) + 3) = ?

(3 + 3) = ?

6

reduce(add, [1,2,3], 0) = ?

reduce(add, [2,3], 1) = ?

reduce(add, [3], 3) = ?

6

final accumulator/
return value

final accumulator/
return value

Reduce Example

30

def multiply(x, y):

 return x * y

reduce(multiply, [1,2,3,4,5], 1)

Reduce Example

31

Math Python
((1*1)*2)*3)*4)*5) = ?

((1*2)*3)*4)*5) = ?

((2*3)*4)*5) = ?

((6*4)*5) = ?

(24*5) = ?

120

reduce(multiply, [1,2,3,4,5], 1) = ?

reduce(multiply, [2,3,4,5], 1) = ?

reduce(multiply, [3,4,5], 2) = ?

reduce(multiply, [4,5], 6) = ?

reduce(multiply, [5], 24) = ?

120

def multiply(x, y):

 return x * y

reduce(multiply, [1,2,3,4,5], 1)

Reduce

32

‣ The accumulator doesn’t always have to be an integer and
reduce doesn’t have to necessarily reduce the list to a single
number.
‣Another example is removing consecutive duplicates from a list.
‣ The accumulator is also a list!

def compress(acc, e):
if acc[len(acc)-1] != e:

return acc + [e]
return acc

def remove_consecutive_dups(L):
return reduce(compress, L, [L[0]])

Using Higher Order Functions

33

‣With higher-order functions, we can make our programs much more concise!
‣ Let’s look at the recursive max function we defined earlier :

Original Recursive Example Revised with Higher Order Functions

def max(L):
 return max_helper(L, L[0])

def max_helper(L, max_val):
 if len(L) == 0:
 return max_val
 if L[0] > max_val:
 return max_helper(L[1:], L[0])
 return max_helper(L[1:], max_val)

def max_of_two(acc, e):
 if acc > e:
 return acc
 return e

def max(L):
 return reduce(max_of_two, L, L[0])

Using Higher Order Functions

34

‣Can go even further with lambda

Original Recursive Example Revised with Higher Order Functions

def max(L):
 return max_helper(L, L[0])

def max_helper(L, max_val):
 if len(L) == 0:
 return max_val
 if L[0] > max_val:
 return max_helper(L[1:], L[0])
 return max_helper(L[1:], max_val)

def max(L):
 return reduce(
 lambda x,y: x if x > y else y,
 L,
 L[0])

35

Reduce practice

Remove odd numbers from an input list of numbers
using reduce.

36

Reduce practice

Remove odd numbers from an input list of numbers using
reduce.

Solution:
reduce(lambda acc,x: acc+[x] if x%2 == 0 else acc, L, [])

Building Functional Programs

37

‣With the power to use higher-order functions and
using functions as first-class citizens, we can now
build programs in a functional style!
‣A functional program can be thought of as one

giant function composition such as f(g(h(x))).

Advantages and Disadvantages of Functional
Programming

38

Advantages Disadvantages
• Programs are deterministic.
• Code is elegant and concise because

of higher order function
abstractions.

• Easy to run code concurrently
because state is immutable.

• Easier to test functions—just call on
different inputs

• Easier to prove functions correct
• It’s fun! Different way of thinking

about problems

• Programs are deterministic.
• Potential performance losses

because of the amount of garbage-
collection that needs to happen
when we end up creating new
variables as we can’t mutate existing
ones.

• The real world is stateful! Writing to
a file changes its state. Functional
programming languages have ways
of handling this, but doing so
elegantly + efficiently is an open
research issue

39

More Higher Order Functions
‣ There are many more commonly-used higher order functions

besides map and reduce.
‣filter(f,x)
‣ Returns a list of those elements in list ‘x’ that make f true,

assuming that f is a function that evaluates to true or false based
on the input.

‣zipWith(f,x,y):
‣ Takes in 2 lists of the same length and passes elements at the

same index into a binary function ‘f ’ to return a single list that
contains elements of the form f(x[i], y[i]).

‣find(f,x):
‣ Returns the first element of list ‘x’ for which ‘f ’ evaluates to true.

Further Exploration
‣ Examples of functional languages include Haskell,

Racket, Common Lisp, Closure, OCaml
‣ (and Pyret!)

‣ Classes at Brown using FP:
‣ CSCI 1260
‣ CSCI 1730
‣ CSCI 1950-Y

40

Main Takeaways
‣ Functional programming is a way of structuring programs using

mathematical functions that take in inputs and return an output.
‣ Functions written in this paradigm:

‣ Don’t mutate any data (stateless)
‣ Are deterministic
‣ Are values that can be passed around and returned

‣ The functional approach allows us to write programs very
concisely using higher-order function abstractions.

‣ Testing and debugging is easier when the overall program is split
into functions that are used as a big function composition.

41

