Shortest Paths in Graphs

CS16: Introduction to Data Structures & Algorithms
Spring 2020
Outline

- Shortest Paths
- Breadth First Search
- Dijkstra’s Algorithm
What is a Shortest Path?

- Given weighted graph G (weights on edges)…
- …what is shortest path from node u to v?

Applications

- Google maps
- Routing packets on the Internet
- Social networks
Single Source Shortest Paths (SSSP)

- Given a graph and a source node
 - find the shortest paths to all other nodes
Simpler Problem: Unit Edges

- Let's start with simpler problem
- On graph where every edge has unit cost
Simpler Problem: Unit Edges

- What is shortest path from A to each node?
 - B: [A, B]
 - D: [A, B, D] or [A, C, D]
 - C: [A, C]
 - E: [A, B, E] or [A, C, E]
Simpler Problem: Unit Edges

- Is there an algorithm we’ve already seen that solves this problem?
numStops (with BFS)

Have distance
Want a path

Follow 'previous' pointers to get a path
Breadth-First Search

- Use BFS to find shortest path from **A** to **E**.
- Consider all steps of adding/removing nodes from queue …
- …and updating each node’s ‘previous’ pointer.
Breadth-First Search

- Use BFS to find shortest path from A to E.
- Consider all steps of adding/removing nodes from queue …
- …and updating each node's 'previous' pointer.

Activity #1

1 min
Breadth-First Search

- Use BFS to find shortest path from A to E.
- Consider all steps of adding/removing nodes from queue ...
- …and updating each node's 'previous' pointer.
Breadth First Search

- BFS always reaches target node in fewest steps
- Let’s look at path from A to E
Breadth First Search Simulation

- **Strategy**
 - BFS uses queue to store nodes to visit
 - Enqueue start node
 - Decorate nodes w/ previous pointers to keep track of path
Breadth First Search Simulation

- Dequeue A
- Decorate its neighbors w/ “prev: A”
- Enqueue them
Breadth First Search Simulation

- Dequeue \(B \) and repeat...
- ...but ignoring nodes that have been decorated
Breadth First Search Simulation

- Dequeueing C and D has no effect...
- …since their neighbors have been decorated
Breadth First Search Simulation

- When we dequeue E...
- ...we traverse the prev pointers to return paths
- shortest path to E: [A, B, E]
Non-Unit Edge Weights

- What if edge weights are not 1?
- More complicated
Shortest Path

- Fill in missing spaces using graph below
- Use A as source vertex

Activity #2
Shortest Path

- Fill in missing spaces using graph below
- Use A as source vertex
Shortest Path

- Fill in missing spaces using graph below
- Use A as source vertex
Shortest Path

- Fill in missing spaces using graph below
- Use A as source vertex
Non-unit Edge Weights

<table>
<thead>
<tr>
<th>Goal Node</th>
<th>Shortest Path</th>
<th>Shortest Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>[A, C, B]</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>[A, C]</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>[A, C, B, D]</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>[A, C, B, E]</td>
<td>6</td>
</tr>
</tbody>
</table>
Shortest Path Application

- Road trip
- Amy, Andy, Prakrit, & Stephanie want to get from PVD to SF…
- …following limited set of highways
- Cities are nodes and highways are edges
- Get to SF using shortest path
Our Graph

Start

PVD

End

SF

LA

PHX

STL

CLE

NYC

PHL

DC

ATL

10

10

10

10

35

10

15

20

20

15

10

10

15

10

10

10

10
What is the cost of this path?
What is the cost of this path? Is there a shorter path?
What is the cost of this path? Is there a shorter path?
Shortest Path

- Why does BFS work with unit edges?
 - Nodes visited in order of total distance from source
- We need way to do the same even when edges have distinct weights!
- How can we do this?
 - Hint: we’ll use a data structure we’ve already seen
Shortest Path

- Use a priority queue!
 - where priorities are total distances from source
 - By visiting nodes in order returned by `removeMin()`...
 - ...you visit nodes in order of how far they are from source

- You guarantee shortest path to node because...
 - ...you don’t explore a node until all nodes closer to source have already been explored
Dijkstra’s Algorithm

- The algorithm is as follows:
 - Decorate source with distance 0 & all other nodes with \(\infty \)
 - Add all nodes to priority queue w/ distance as priority
 - While the priority queue isn’t empty
 - Remove node from queue with minimal priority
 - Update distances of the removed node’s neighbors if distances decreased

- When algorithm terminates, every node is decorated with minimal cost from source
Dijkstra’s Algorithm Example

Step 1
- Label source w/ dist. 0
- Label other vertices w/ dist. ∞
- Add all nodes to Q

Step 2
- Remove node with min. priority from Q (S in this example).
- Calculate dist. from source to removed node’s neighbors...
 - …by adding adjacent edge weights to S’s dist.
Dijkstra's Algorithm Example

Step 3

- While Q isn't empty,
 - repeat previous step
 - removing A this time
- Priorities of nodes in Q may have to be updated
 - ex: B’s priority

Step 4

- Repeat again by removing vertex B
- Update distances that are shorter using this path than before
 - ex: C now has a distance 6 not 10
Dijkstra's Algorithm Example

- Step 5
 - Repeat
 - this time removing C

- Step 6
 - After removing D...
 - ...every node has been visited...
 - ...and decorated w/ shortest dist. to source
Dijkstra’s Algorithm Example

- Previous example decorated nodes with shortest *distance* but did not “create” paths
- How could you enhance algorithm to return the shortest path to a particular node?
 - Previous pointers!
- Let’s do another example
Dijkstra’s Example

A

B

C

D

E

\|\|\|\|\|\|

4

2

3

1

5

2

3

1

0

∞

∞

∞

∞

∞
Dijkstra's Example

![Graph with nodes labeled A, B, C, D, E and edges with weights 4, 3, 2, 1, 5, ∞, ∞.]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>
Dijkstra’s Example
Dijkstra’s Example

![Graph with nodes A, B, C, D, E and edges with weights 2, 3, 1, 4, 5]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Dijkstra’s Example

A B C D E

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Simulate Dijkstra’s Activity #3 2 min
Simulate Dijkstra’s

Activity #3

2 min
Simulate Dijkstra’s

1 min

Activity #3
Simulate Dijkstra’s
Dijkstra’s Algorithm

- Comes up with an optimal solution
 - shortest path to each node
- Like many optimization algorithms, uses dynamic programming
 - overlapping subproblems (distances to nodes)
 - solved in a particular order (closest first)
- Dijkstra’s is greedy
 - at each step, considers next closest node
 - Greedy algorithms not always optimal, usually fast
function dijkstra(G, s):
 // Input: graph G with vertices V, and source s
 // Output: Nothing
 // Purpose: Decorate nodes with shortest distance from s
 for v in V:
 if v.dist == infinity: // Initialize distance decorations
 v.dist = infinity
 if v.prev == null: // Initialize previous pointers to null
 v.prev = null
 s.dist = 0 // Set distance to start to 0

 PQ = PriorityQueue(V) // Use v.dist as priorities
 while PQ not empty:
 u = PQ.removeMin()
 for all edges (u, v): // each edge coming out of u
 if u.dist + cost(u, v) < v.dist: // cost() is weight
 v.dist = u.dist + cost(u,v) // Replace as necessary
 v.prev = u // Maintain pointers for path
 PQ.decreaseKey(v, v.dist)
function \texttt{dijkstra}(G, s):
 for v in V:
 \hspace{1em} // 1. \text{O}(_)
 v.dist = \text{infinity}
 v.prev = null
 s.dist = 0

PQ = \texttt{PriorityQueue}(V) \hspace{1em} // 2. \text{O}(_)
while PQ not empty:
 \hspace{1em} // 3. \text{O}(_)
 u = PQ.removeMin()
 \hspace{1em} // 4. \text{O}(_)
 for all edges (u, v):
 \hspace{1em} // 5. \text{O}(_)
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u,v)
 v.prev = u
 PQ.decreaseKey(v, v.dist) \hspace{1em} // 6. \text{O}(_)

Total:
 \hspace{1em} // 7. \text{O}(_)

\begin{center}
Activity \#3
\end{center}
function dijkstra(G, s):
 for v in V: // 1. O(__)
 v.dist = infinity
 v.prev = null
 s.dist = 0

 PQ = PriorityQueue(V) // 2. O(__)
 while PQ not empty: // 3. O(__)
 u = PQ.removeMin() // 4. O(__)
 for all edges (u, v): // 5. O(__)
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u, v)
 v.prev = u
 PQ.decreaseKey(v, v.dist) // 6. O(__)

Total: 7. O(__)
function `dijkstra(G, s)`:
 for `v` in `V`:
 // 1. O(__)
 v.dist = infinity
 v.prev = null
 s.dist = 0

 `PQ = PriorityQueue(V)` // 2. O(__)
while `PQ` not empty:
 // 3. O(__)
 u = `PQ.removeMin()` // 4. O(__)
 for all edges `(u, v)`: // 5. O(__)
 if `v.dist > u.dist + cost(u, v)`:
 v.dist = u.dist + cost(u,v)
 v.prev = u
 `PQ.decreaseKey(v, v.dist)` // 6. O(__)

Total: 7. O(__)

Activity #3
function dijkstra(G, s):
 for v in V: // 1. O(__)
 v.dist = infinity
 v.prev = null
 s.dist = 0
 PQ = PriorityQueue(V) // 2. O(__)
 while PQ not empty: // 3. O(__)
 u = PQ.removeMin() // 4. O(__)
 for all edges (u, v): // 5. O(__)
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u, v)
 v.prev = u
 PQ.decreaseKey(v, v.dist) // 6. O(__)

Total: 7. O(__)
Dijkstra Runtime

function **dijkstra**\((G, s)\):

for \(v \in V \):

\(v.\text{dist} = \text{infinity} \)
\(v.\text{prev} = \text{null} \)
\(s.\text{dist} = 0 \)

\(\text{PQ} = \text{PriorityQueue}(V) \)

while \(\text{PQ} \) not empty:

\(u = \text{PQ}.\text{removeMin()} \)

for all edges \((u, v) \):

if \(v.\text{dist} > u.\text{dist} + \text{cost}(u, v) \):

\(v.\text{dist} = u.\text{dist} + \text{cost}(u, v) \)
\(v.\text{prev} = u \)

\(\text{PQ}.\text{decreaseKey}(v, v.\text{dist}) \)

\(\mathcal{O}(\lvert V \rvert) \)

\(\mathcal{O}(\lvert V \rvert) \)

depends on \(\text{PQ} \)

\(\mathcal{O}(\lvert E \rvert) \)

total

depends on \(\text{PQ} \)
Dijkstra Runtime

- Depends on priority queue implementation
- If PQ implemented with Array or Linked List
 - `insert()` is $O(1)$
 - `removeMin()` is $O(|V|)$
 - you have to scan to find min-priority element
 - `decreaseKey()` is $O(1)$
 - you already have node when you change its key
function **dijkstra**(G, s):
 for v in V:
 v.dist = infinity
 v.prev = null
 s.dist = 0

 PQ = PriorityQueue(V)
 while PQ not empty:
 u = PQ.removeMin()
 for all edges (u, v):
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u, v)
 v.prev = u
 PQ.decreaseKey(v, v.dist)
Dijkstra Runtime w/ Array or List

- If PQ implemented with Array or Linked List
 - $O(|V| + |V| + |V|^2 + |E|) = O(|V|^2 + |E|)$
 - $= O(|V|^2)$

- since $|E| \leq |V|^2$
Dijkstra Runtime w/ Heap

- If PQ implemented with Heap
 - `insert()` is $O(\log |V|)$
 - you may need to upheap
 - `removeMin()` is $O(\log |V|)$
 - you may need to downheap
 - `decreaseKey()` is $O(\log |V|)$
 - assume we have dictionary that maps vertex to heap entry in $O(\log |V|)$ time (so no need to scan heap to find entry)
 - you may need to upheap after decreasing the key
Dijkstra Runtime w/ Heap

function \texttt{dijkstra}(G, s):
 for v in V:
 v.dist = infinity
 v.prev = null
 s.dist = 0
 PQ = PriorityQueue(V)
 while PQ not empty:
 u = PQ.removeMin()
 for all edges (u, v):
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u,v)
 v.prev = u
 PQ.decreaseKey(v, v.dist)

\textbf{O(|V|)}

\textbf{O(|V| log|V|)}

\textbf{O(|E|)}

\textbf{O(|V| log|V|)}
Dijkstra Runtime w/ Heap

- If PQ implemented with Heap

\[
O(|V| + |V| \log |V| + |V| \log |V| + |E| \log |V|)
\]

\[
= O(|V| + |V| \log |V| + |E| \log |V|)
\]

\[
= O\left((|V| + |E|) \cdot \log |V| \right)
\]

- Note
 - though the \(O(|E|) \) loop is nested in the \(O(|V|) \) loop
 - we visit each edge at most twice rather than \(|V|\) times
 - That’s why while loop is \(O\left((V \log |V|) + (|E| \log |V|) \right) \)
Dijkstra’s on Graph with Negative Edges

Activity #5

1 min
Dijkstra’s on Graph with Negative Edges

Activity #5
Dijkstra’s on Graph with Negative Edges

Activity #5

Start

A

B

8

2

C

-7

D

5

End

Activity #5

0 min
Dijkstra isn’t perfect!

- We can find shortest path on weighted graph in
 \[O((|V| + |E|) \times \log|V|) \]
 or can we…
- Dijkstra fails with negative edge weights
 - Returns \([A, C, D]\) when it should return \([A, B, C, D]\)
Negative Edge Weights

- Negative edge weights are a problem for Dijkstra.
- But negative cycles are even worse!
 - because there is no true shortest path!
Bellman-Ford Algorithm

- Algorithm that handles graphs w/ neg. edge weights
- Similar to Dijkstra’s but more robust
 - Returns same output as Dijkstra’s for any graph w/ only positive edge weights (but runs slower)
 - Returns correct shortest paths for graphs w/ neg. edge weights
- How: not greedy!