Shortest Paths in Graphs

CS16: Introduction to Data Structures & Algorithms
Spring 2019
Outline

- Shortest Paths
- Breadth First Search
- Dijkstra’s Algorithm
What is a Shortest Path?

- Given weighted graph G (weights on edges)...
- ...what is shortest path from node u to v?

Applications
- Google maps
- Routing packets on the Internet
- Social networks
Single Source Shortest Paths (SSSP)

- Given a graph and a source node
 - find the shortest paths to all other nodes
Simpler Problem: Unit Edges

- Let's start with simpler problem
- On graph where every edge has unit cost
Simpler Problem: Unit Edges

- What is shortest path from A to each node?
 - B: [A, B]
 - D: [A, B, D] or [A, C, D]
 - C: [A, C]
 - E: [A, B, E] or [A, C, E]
Simpler Problem: Unit Edges

- Is there an algorithm we’ve already seen that solves problem?
 - Hint: yes!
- What graph traversals have we learned?
Breadth-First Search

- Use BFS to find shortest path from A to E.
- Consider all steps of adding/removing nodes from queue ...
- ...and updating each node's 'previous' pointer.

![Diagram of graph with nodes A, B, C, D, E and edges labeled with 1]
Breadth-First Search

- Use BFS to find shortest path from A to E.
- Consider all steps of adding/removing nodes from queue ...
- ...and updating each node's 'previous' pointer.

Activity #1

1 min
Breadth-First Search

- Use BFS to find shortest path from A to E.
- Consider all steps of adding/removing nodes from queue …
- …and updating each node's 'previous' pointer.
Breadth First Search

- BFS always reaches target node in fewest steps
- Let’s look at path from A to E
Breadth First Search Simulation

- **Strategy**
 - BFS uses queue to store nodes to visit
 - Enqueue start node
 - Decorate nodes w/ previous pointers to keep track of path

![Queue Diagram](image)
Breadth First Search Simulation

- Dequeue A
- Decorate its neighbors w/ “prev: A”
- Enqueue them
Breadth First Search Simulation

- Dequeue B and repeat...
- ...but ignoring nodes that have been decorated

<table>
<thead>
<tr>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
</tbody>
</table>

prev: A

prev: B

prev: A

prev: B
Breadth First Search Simulation

- Dequeueing C and D has no effect...
- ...since their neighbors have been decorated
Breadth First Search Simulation

- When we dequeue E...
- ...we traverse the prev pointers to return paths
 - shortest path to E: [A, B, E]
Non-Unit Edge Weights

- What if edge weights are not 1?
- More complicated
Shortest Path

- Fill in missing spaces using graph below
- Use A as source vertex

Activity #2

2 min
Shortest Path

- Fill in missing spaces using graph below
- Use A as source vertex

Activity #2
Shortest Path

- Fill in missing spaces using graph below
- Use A as source vertex

Activity #2

1 min
Shortest Path

- Fill in missing spaces using graph below
- Use A as source vertex
Non-unit Edge Weights

<table>
<thead>
<tr>
<th>Goal Node</th>
<th>Shortest Path</th>
<th>Shortest Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>[A, C, B]</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>[A, C]</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>[A, C, B, D]</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>[A, C, B, E]</td>
<td>6</td>
</tr>
</tbody>
</table>

![Graph with labeled nodes and edges with weights]
Shortest Path Application

- Road trip
- Alina, Maggie, Prakrit & Stephanie want to get from PVD to SF…
- …following limited set of highways
- Cities are nodes and highways are edges
- Get to SF using shortest path
Our Graph
Our Graph

What is the cost of this path?
Our Graph

What is the cost of this path? Is there a shorter path?
What is the cost of this path? Is there a shorter path?
Shortest Path

- Why does BFS work with unit edges?
 - Nodes visited in order of total distance from source
- We need way to do the same even when edges have distinct weights!
- How can we do this?
 - Hint: we’ll use a data structure we’ve already seen
Shortest Path

- Use a priority queue!
 - where priorities are total distances from source
 - By visiting nodes in order returned by `removeMin()`...
 - ...you visit nodes in order of how far they are from source

- You guarantee shortest path to node because...
 - ...you don’t explore a node until all nodes closer to source have already been explored
Dijkstra’s Algorithm

- The algorithm is as follows:
 - Decorate source with distance 0 & all other nodes with \(\infty\)
 - Add all nodes to priority queue w/ distance as priority
 - While the priority queue isn’t empty
 - Remove node from queue with minimal priority
 - Update distances of the removed node’s neighbors if distances decreased

- When algorithm terminates, every node is decorated with minimal cost from source
Dijkstra’s Algorithm Example

- **Step 1**
 - Label source with dist. 0
 - Label other vertices with dist. ∞
 - Add all nodes to Q

- **Step 2**
 - Remove node with min. priority from Q (S in this example).
 - Calculate dist. from source to removed node’s neighbors…
 - …by adding adjacent edge weights to S’s dist.
Dijkstra’s Algorithm Example

- **Step 3**
 - While \(Q \) isn’t empty,
 - repeat previous step
 - removing \(A \) this time
 - Priorities of nodes in \(Q \) may have to be updated
 - ex: \(B \)’s priority

- **Step 4**
 - Repeat again by removing vertex \(B \)
 - Update distances that are shorter using this path than before
 - ex: \(C \) now has a distance 6 not 10
Dijkstra’s Algorithm Example

- Step 5
 - Repeat
 - this time removing C

- Step 6
 - After removing D...
 - …every node has been visited...
 - …and decorated w/ shortest dist. to source
Dijkstra’s Algorithm Example

› Previous example decorated nodes with shortest distance but did not “create” paths

› How could you enhance algorithm to return the shortest path to a particular node?
 › Previous pointers!

› Let’s do another example
 › but this time without explanation
 › try to explain what the algorithm is doing at each step
Dijkstra's Example

A

B

C

D

E

\[\begin{array}{|c|c|c|c|c|c|}
\hline
A & B & C & D & E \\
\hline
0 & \infty & \infty & \infty & \infty \\
\hline
\end{array} \]
Dijkstra's Example

![Graph]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>∞</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>∞</td>
</tr>
</tbody>
</table>
Dijkstra’s Example

A

B

C

D

E

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Dijkstra’s Example

A B C D E
0 3 2 5 6
Dijkstra’s Example

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
```
Simulate Dijkstra’s

Activity #3 2 min
Simulate Dijkstra’s

Activity #3

2 min
Simulate Dijkstra’s

1 min

Activity #3
Simulate Dijkstra's Activity #3
Dijkstra’s Algorithm

- Dijkstra’s algorithm is an example of a class of algorithms we previously mentioned.
- Since it uses a priority queue,
 - at each step of iteration...
 - …we consider next closest node given the information we have.
- What algorithm paradigm does this fall under?
function **dijkstra**(*G*, *s*):

 // Input: graph *G* with vertices *V*, and source *s*
 // Output: Nothing
 // Purpose: Decorate nodes with shortest distance from *s*

 for *v* in *V*:
 v.dist = infinity // Initialize distance decorations
 v.prev = null // Initialize previous pointers to null

 s.dist = 0 // Set distance to start to 0

 PQ = PriorityQueue(*V*) // Use *v*.dist as priorities

 while *PQ* not empty:
 u = *PQ*.removeMin()
 for all edges (*u*, *v*):
 if *u*.dist + cost(*u*, *v*) < *v*.dist: // cost() is weight
 v.dist = *u*.dist + cost(*u*,*v*) // Replace as necessary
 v.prev = *u* // Maintain pointers for path
 PQ.decreaseKey(*v*, *v*.dist)
function dijkstra(G, s):
 for v in V: // 1. O(__)
 v.dist = infinity
 v.prev = null
 s.dist = 0

 PQ = PriorityQueue(V) // 2. O(__)
 while PQ not empty: // 3. O(__)
 u = PQ.removeMin() // 4. O(__)
 for all edges (u, v): // 5. O(__)
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u,v)
 v.prev = u
 PQ.decreaseKey(v, v.dist) // 6. O(__)

 Total: 7. O(__)
function `dijkstra(G, s)`:
 for v in V: // 1. O(__)
 v.dist = infinity
 v.prev = null
 s.dist = 0

 PQ = PriorityQueue(V) // 2. O(__)
 while PQ not empty: // 3. O(__)
 u = PQ.removeMin() // 4. O(__)
 for all edges (u, v): // 5. O(__)
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u, v)
 v.prev = u
 PQ.decreaseKey(v, v.dist) // 6. O(__)

Total: 7. O(__)

Activity #3

2 min
function `dijkstra`(G, s):
 for v in V: // 1. O(__)
 v.dist = infinity
 v.prev = null
 s.dist = 0

 PQ = PriorityQueue(V) // 2. O(__)
 while PQ not empty: // 3. O(__)
 u = PQ.removeMin() // 4. O(__)
 for all edges (u, v): // 5. O(__)
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u, v)
 v.prev = u
 PQ.decreaseKey(v, v.dist) // 6. O(__)

Total: 7. O(__)

Activity #3
function dijkstra(G, s):
 for v in V: // 1. O(__)
 v.dist = infinity
 v.prev = null
 s.dist = 0

 PQ = PriorityQueue(V) // 2. O(__)
 while PQ not empty: // 3. O(__)
 u = PQ.removeMin() // 4. O(__)
 for all edges (u, v): // 5. O(__)
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u, v)
 v.prev = u
 PQ.decreaseKey(v, v.dist) // 6. O(__)

Total: 7. O(__)
function \texttt{dijkstra}(G, s):
 for \(v\) in \(V\):
 \(v\).dist = infinity
 \(v\).prev = null
 \(s\).dist = 0

\(PQ = \text{PriorityQueue}(V)\)

while \(PQ\) not empty:
 \(u = PQ.removeMin()\)
 for all edges \((u, v)\):
 if \(v\).dist > \(u\).dist + cost(u, v):
 \(v\).dist = \(u\).dist + cost(u, v)
 \(v\).prev = u
 \(PQ.decreaseKey(v, v\).dist\)
Dijkstra Runtime

- Depends on priority queue implementation
- If PQ implemented with Array or Linked List
 - `insert()` is $O(1)$
 - `removeMin()` is $O(|V|)$
 - you have to scan to find min-priority element
 - `decreaseKey()` is $O(1)$
 - you already have node when you change its key
function **dijkstra**(G, s):
 for v in V:
 v.dist = infinity
 v.prev = null
 s.dist = 0

 PQ = PriorityQueue(V)
 while PQ not empty:
 u = PQ.removeMin()
 for all edges (u, v):
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u,v)
 v.prev = u
 PQ.decreaseKey(v, v.dist)
If PQ implemented with Array or Linked List

\[O(|V| + |V| + |V|^2 + |E|) = O(|V|^2 + |E|) \]

\[= O(|V|^2) \]

since \(|E| \leq |V|^2\)
Dijkstra Runtime w/ Heap

- If PQ implemented with Heap
 - `insert()` is $O(\log |V|)$
 - you may need to upheap
 - `removeMin()` is $O(\log |V|)$
 - you may need to downheap
 - `decreaseKey()` is $O(\log |V|)$
 - assume we have dictionary that maps vertex to heap entry in $O(\log |V|)$ time (so no need to scan heap to find entry)
 - you may need to upheap after decreasing the key
Dijkstra Runtime w/ Heap

```python
function dijkstra(G, s):
    for v in V:
        v.dist = infinity
        v.prev = null
    s.dist = 0
    PQ = PriorityQueue(V)
    while PQ not empty:
        u = PQ.removeMin()
        for all edges (u, v):
            if v.dist > u.dist + cost(u, v):
                v.dist = u.dist + cost(u,v)
                v.prev = u
                PQ.decreaseKey(v, v.dist)
```

- \(O(|V|)\)
- \(O(|V| \log |V|)\)
- \(O(|E|)\)
- Total \(O(|V| \log |V|)\)
Dijkstra Runtime w/ Heap

- If PQ implemented with Heap

\[O(|V| + |V| \log |V| + |V| \log |V| + |E| \log |V|) \]

\[= O(|V| + |V| \log |V| + |E| \log |V|) \]

\[= O\left((|V| + |E|) \cdot \log |V| \right) \]

- Note

 - though the \(O(|E|) \) loop is nested in the \(O(|V|) \) loop
 - we visit each edge at most twice rather than \(|V| \) times
 - That’s why while loop is \(O\left((V \log |V|) + (|E| \log |V|) \right) \)
Dijkstra’s on Graph with Negative Edges

Activity #5

1 min
Dijkstra’s on Graph with Negative Edges

Start

A

B

2

C

-7

D

5

End

Activity #5

1 min
Dijkstra’s on Graph with Negative Edges

Activity #5

Start

A

B

C

D

End

0 min
Dijkstra isn’t perfect!

- We can find shortest path on weighted graph in
 - $O((|V| + |E|) \times \log|V|)$
 - or can we...
- Dijkstra fails with negative edge weights
- Returns $[A, C, D]$ when it should return $[A, B, C, D]$
Negative Edge Weights

- Negative edge weights are a problem for Dijkstra.
- But negative cycles are even worse!
 - because there is no true shortest path!
Bellman-Ford Algorithm

- Algorithm that handles graphs with negative edge weights
- Similar to Dijkstra’s but more robust
 - Returns same output as Dijkstra’s for any graph with only positive edge weights (but runs slower)
 - Returns correct shortest paths for graphs with negative edge weights