PageRank

CS16: Introduction to Data Structures & Algorithms
Summer 202 |

Outline

» The WWW & Search Engines

» Basic PageRank
» (Real) PageRank

» PageRank In practice

1 he World Wide Web

» Created by Tim-Berners Lee in 1989

» Collection of "pages”

» Pages are

» identified by Uniform Resource Locator (URL)

» composed of text & hyperlinks (pointers to
other pages)

Hypertext

» Hypertext and hyperlinks predate the WWW

» Hypertext Editing System (HES) in 1967
» Ted Nelson, Andy van Dam + Brown students

» File Retrieval and Editing System (FRESS) In [968

» Andy van Dam + Brown students (including Bob Wallace)
» used In Brown's “Introduction to Poetry” in 1975 & 1976
» oN-Line System (NLS) in 1968

» Douglas Engelbart

Growth of the Web

O # of Websites
1,800,000,000 V

1,350,000,000

900,000,000

450,000,000

O L L L L L L L L L L L L L L L :
1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2020

Growth of the Web

O # of Websites

18,000,000

15,000,000

12,000,000

9,000,000

6,000,000

3,000,000

0 L L L |
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Yahoo (2K) Google (2.4M)
Altavista (23K)

Search Engines

» TheWeb is great but how do find what we need?
» Search engine
» system that indexes collection of web pages

» returns relevant pages when queried with keyword(s)

» (J: how do we build a search engine!?

Search Engines

» |dea #1
» builld a dictionary that maps keywords to URLs
» use hash tables or binary search trees (see Lecture 05)
» what's the problem with this approach!?
» some keywords will have too many URLs to check

» let's rank the pages by relevancel!

» : how do we rank pages by relevance!

Search Engines 5> “YaHoo!

altavista
» Rank by frequency

» builld a dictionary that maps keywords to URLs

» use hash tables or binary search trees (see end of Lecture 05)

» store URLs ranked by the # of times keyword appears In page
» : Is this a good idea!

» Why or why not?

Search Engines 5> “YaHoo!

altavista
» Rank by frequency

» builld a dictionary that maps keywords to URLs

Turtl an{ . .
FrorlnlWikipzia. the free encyclopedia *u r-t e -tu r -

For other uses, see Turtle (disambiguation). C :u r"t e 'tu r":

This article's lead section may not adequately summarize its

contents. To comply with Wikipedia's lead section guidelines, B u I’“t e -t U r_:

please consider modifying the lead to provide an accessible

Turt
Turt
turt
Turt

urt
Lurt
urt
Lurt

urt
Lurt
urt
Lurt

i
\ 2

overview of the article's key points in such a way that it can stand

on its own as a concise version of the article. (January 2018) .U r-t e tU r L

Turtles are reptiles of the order Testudines characterized by

Turties turtle turtle turtle turtle turt
a special bony or cartilaginous shell developed from their ribs Temporal range: .U r e U r U r L .U r L .U r
and acting as a shield.[® "Turtle" may refer to the order as a Middle Jurassic — Present,l!]

turt
turt
turt
turt

turt
turt
turt
turt

whole (American English) or to fresh-water and sea-dwelling i e e e T U I’"t e 'tu r"t
testudines (British English).[4] The order Testudines includes -

turtle turt
turtle turt
turtle turt

urt
urt
Lurt
urt

both extant (living) and extinct species. The earliest known
members of this group date from the Middle Jurassic,!]
making turtles one of the oldest reptile groups and a more
ancient group than snakes or crocodilians. Of the 356 known
species!?] alive today, some are highly endangered.[?]

Turtles are ectotherms—animals commonly called cold-
blooded—meaning that their internal temperature varies
" . . u »

M o d d Md D D D @D
(D(D(D(D(DI(D(D(D(D
(D(D(D(D(DI(D(D(D(D
M o D d Md D D D @D

The Anatomy of a Large-Scale Hypertextual
Web Search Engine

Sergey Brin and Lawrence Page

Google

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey @cs .stanford.edu and page @cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of
use of the structure present in hypertext. Googl
and produce much more satisfying search resull
text and hyperlink database of at least 24 millio
To engineer a search engine is a challenging tas
millions of web pages involving a comparable 1
millions of queries every day. Despite the impo
very little academic research has been done on
technology and web proliferation, creating a w¢
years ago. This paper provides an in-depth desc
first such detailed public description we know ¢
traditional search techniques to data of this mag
with using the additional information present in
paper addresses this question of how to build a
additional information present in hypertext. Als
with uncontrolled hypertext collections where ¢

» Sergey Brin & Larry Page
» PhD students doing research in information retrieval
» noticed that links were important too!
» Inturtion that links conveyed information about importance

» But what exactly? and how can you make use of links?

n10 n25
n8
n3
n19 no
nii
J n7
|
5 .
13
n3g “'
n17

» How does PageRank work?
» Why does it work?

» How do you implement 1t efficiently?
» Google iIndexes “hundreds of billions™ of pages
» answers and ranks in 0.5 seconds
» processes 40, 000 queries a second

» 3.5 billion per day

» Using clever algorithms and data structures!

z From Lecture Ol

[he PageRank Algorithm

» Views WWW as a directed graph G=(V, E)
» web pages are the vertices

» hyperlinks are the edges

dougwoos.com| |[brown.edu mib.com

| work at Faculty members 39 alumni of
brown.edu and include brown.edu have
watch baseball at dougwo0s.com blayed in MLB
mib.com

[he PageRank Algorithm

[he PageRank Algorithm

[he PageRank Algorithm

» Views WWW as a directed graph G=(V, E)
» web pages are the vertices

» hyperlinks are the edges

» High-level idea
» algorithm works by rounds
» think of the pagerank of a page as some amount of fluid

» at each round a page pushes Its pagerank/fluid to the
pages It links to

[he Basic PageRank Algorithm

» At every round
» each vertex splits its PR evenly among its outgoing edges
» each vertex receives PR from all its iIncoming edges
» this Is done using an update rule which Is run on every vertex

» The update rule for Basic PageRank is:

PRv) = Y i

out(u)|

Basic PageRank: Example |

Round 1

Basic PageRank: Example |

Round 2

Basic PageRank: Example |
Round 3

20

Basic PageRank: Example |

Round 4

2|

Basic PageRank: Example |

Round 5

il

Basic PageRank: Example |
Round 6

.225

285

Basic PageRank: Example |

Round 7

L

Basic PageRank: Example |
Round 8

.1875

25

BasiC PageRank

» At Round 3
» B has pagerank .425

» D has pagerank . 2
» A has pagerank .1875

» C has pagerank .1875

» E has pagerank 0

» What happens it we keep going!
» does the ranking stabilize!
» can E end up with non-zero pagerank!

» for certain graphs, If we keep going long enough pageranks will stabilize

26

Observations

» The sum of all pageranks always equals 1
» pagerank 1s moved around but never created or destroyed
» Pages with many incoming edges accumulate more pagerank (e.g., A, D)
» even better If Incoming edges from pages with high pagerank (e.g., B)
» Pages with no incoming edges lose all their pagerank (e.g,, E)
» Inturtively
» the more a page Is linked to, the higher its rank

» the more a page Is linked to by high-ranked pages, the higher it ranks

T

BasiC PageRank

BasicPageRank (G, k): # k is number of “rounds”
for v in V:
v.rank = 1/|V|
for 1 from 1 to k:
for v in V:
Vv.prevrank = v.rank
for v in V:
v.rank =
for u in v.incoming:

v.rank = v.rank + u.prevrank/|u.outgoing|

» runtime of
> O(|V[+k(|V[+[E[))=0(|V]|+[E])
» assuming K Is a constant

28

Basic PageRank: Example 2

3
(&

i

Basic PageRank on Example 2

BasicPageRank(G, k): # k is number of “rounds”
for v in V:
v.rank = 1/|V]|
for 1 from 1 to k:
for v in V:
v.prevrank = v.rank
for v in V:
v.rank =
for u in v.incoming:

v.rank = v.rank + u.prevrank/|u.outgoing|

30

Basic PageRank: Example 2

Round 1

31

Basic PageRank: Example 2

Round 2

B

Basic PageRank: Example 2
Round 3

B5)

Basic PageRank: Example 2
1 e 5 O

° (&)
0 e 0

» All the pagerank got trapped at B

» happens If graph has sinks (i.e., nodes w/ no outgoing edges)

D2}

Basic PageRank: Example 3

.25 .28
< B
(&

Basic PageRank: Example 3

1/4 1/8 @1/4
\

1/4
174 \ & ’@ 1/4

1/4

36

Basic PageRank: Example 3

1/8 0
< B
O

1/8

172
172 \ & '@ 3/8

BYe3

B

Basic PageRank: Example 3

0 0
< B
O
1747
172 \ & ’@ 1/2

15/52

38

Basic PageRank: Example 3

0 0
< B
O
1747
172 \ & ’@ 1/2

i15/62

» All the pagerank got trapped at C and

57

BasiC PageRank

» Basic PageRank doesn't work for certain graphs
» e.g.graphs with sinks or with cycles with no outgoing edges
» all the pagerank gets trapped there

» How do we handle “rank traps’?

» Water flows down from high elevation to low elevation
» why doesn't all the water end up at the lowest points on Earth?
» because some of the water evaporates...

» ...and rains back down on the high elevation points

40

—andling Rank [raps

» Let's make some of the pagerank evaporate!
» We need a new update rule
» In basic update rule, nodes gave all their pagerank to neighbors
» In new update rule, a node will
» give a d fraction of its PR to rts neighbors (split evenly)
» give a 1-d fraction of its PR to all npdes (split evenly)
» Including self + neighbors

» this guarantees that pagerank doesn{t accumulate anywhere

» dis usually set to .85 What happens If the node Is a sink!

4]

Disappearing PageRank

- ~n
\ ~

-
~ -

27

Disappearing PageRank

1/2

(1-d) /2

» The sum of the pageranks does not sum to 1.

L] d
md Mg
2 2 3.5

pcnce 0 < d < 1

» We lost d/2 of B's pagerank when we updated

455

Handling Sinks

» There are several ways to handle sinks

» The simplest is to modify the graph as follows
» If v Is a sink, add an edge from v to every node in the graph
» This includes an edge from v to rtself

» Then use the update rule we described on slide #38

44

[he Real PageRank Algorithm

» Add edges connecting every sink to every node

» At every round each vertex

» splits a d fraction of its PR evenly among its outgoing
edges

» splitsa (1-d) fraction of its PR evenly among all nodes

» receives PR from its Incoming edges & from Its share of
the “evaporated” pageranks of all nodes

» d is called the damping factor & is usually set to . 85

2455

[he Real PageRank Algorithm

» At every round the PR of each vertex v Is updated using:

e d- PR(1) (1—d) - PR(u)
) (< |out<u>\)+Z v

ue€in(v) uecV

|. nodes with edges
pointing to v i (d Z PFi(u)) | Z PR
peiraciion of us PR u€in(v) ‘Ou (u)‘ uGV
3. number of edges PR(u) | 1—d
- . <d' 2 \out<u>\> W I
4. (1-d) fraction of u's PR u€in(v)

14 PR(u)

V] Z out(u)]

| he Real PageRank

» Runtime of a round O(|E |)
» How many rounds should we run?
» |deally until the pageranks “stabilize”™
» pageranks stop changing even though we run more rounds
» Ve can prove that

» If we run for large enough number of rounds then
pageranks will stabilize

» that number could be very large for some graphs...

» ...but In practice it's usually reasonable

47

Alternative Sink Handling

» You can also handle sinks without modifying the graph

» but you need a slightly different update rule

- d PR(u) PR(u)
PR =+ (3 o+

u€in(v) uéesinks(G)

48

PageRank requirements

» Storage
» Need to store a copy of the entire web graph
» Google estimated to store about 50 billion web pages
» Average size of a page Is 2 MB
» ...that's about of 100 petabytes (1 PB = 250 bytes)!
» Hard to compute on such a large data set
» need to store data on clusters of 1000's of machines
» need to coordinate all these machines to execute PageRank

» Google File System, MapReduce, Big lable, etc.

255

PageRank In Practice

» Google continually computes the pagerank of every webpage
» When you query

» your keyword narrows down the pages to return

» then Google ranks them by their precomputed pagerank

» VWe don't know If Google still uses the original PageRank or
some variant

50

Other Applications of PageRank

» PageRank is also in other fields
» Biology (studying protein interactions)
» Neuroscience (finding iImportance of brain regions)
» Engineering (finding anomalies)
» Mathematics (analyzing graphs)
» Sports (ranking sports teams)
» Literature (Importance/influence of books)

» Bibliometrics (which authors are more influential)

57

Readings

» A Tilm from [9/6 about Andy's FRESS system and its use In
Introduction to Poetry

» https://archive.org/detalls/AndyVanDamHypertexthilm

» The book Networks, Crowds and Markets by Easly and
Kleinberg has a great overview of PageRank

» the evaporation metaphor comes from there!
» Other applications of PageRank
» https://arxiv.org/pdf/140/.510/.pdf

» Size of the web

» http://www.worldwidewebsize.com

o

https://archive.org/details/AndyVanDamHypertextFilm
https://arxiv.org/pdf/1407.5107.pdf
http://www.worldwidewebsize.com

