Shortest Paths in Graphs

CS16: Introduction to Data Structures & Algorithms
Seny Kamara - Spring 2018
Outline

- Shortest Paths
- Breadth First Search
- Dijkstra’s Algorithm
- Bellman-Ford Algorithm
What is a Shortest Path?

- Given weighted graph G (weights on edges)...
- ...what is shortest path from node u to v?

Applications

- Google maps
- Routing packets on the Internet
- Social networks
Single Source Shortest Paths (SSSP)

- Given a graph and a source node
- Find the shortest paths to all other nodes
Simpler Problem: Unit Edges

- Let's start with simpler problem
- On graph where every edge has unit cost
Simpler Problem: Unit Edges

- What is shortest path from A to each node?
 - B: [A, B]
 - D: [A, B, D] or [A, C, D]
 - C: [A, C]
 - E: [A, B, E] or [A, C, E]
Simpler Problem: Unit Edges

- Is there an algorithm we’ve already seen that solves problem?
 - Hint: yes!
- What graph traversals have we learned?
Breadth-First Search

- Use BFS to find shortest path from A to E.
- Consider all steps of adding/removing nodes from queue ...
 - …and updating each node's ‘previous' pointer.
Breadth-First Search

- Use BFS to find shortest path from A to E.
- Consider all steps of adding/removing nodes from queue ...
- …and updating each node's 'previous' pointer.

Activity #1

1 min
Breadth-First Search

- Use BFS to find shortest path from A to E.
- Consider all steps of adding/removing nodes from queue ...
- …and updating each node's ‘previous' pointer.

![Graph](image_url)
Breadth First Search

- BFS always reaches target node in fewest steps
- Let’s look at path from A to E
Breadth First Search Simulation

- Strategy
 - BFS uses queue to store nodes to visit
 - Enqueue start node
 - Decorate nodes with previous pointers to keep track of path
Breadth First Search Simulation

- Dequeue A
- Decorate its neighbors w/ “prev: A”
- Enqueue them
Breadth First Search Simulation

- Dequeue B and repeat...
- ...but ignoring nodes that have been decorated
Breadth First Search Simulation

- Dequeuing C and D has no effect...
- ...since their neighbors have been decorated
Breadth First Search Simulation

- When we dequeue E...
- ...we traverse the prev pointers to return paths
 - shortest path to E: [A, B, E]
Non-Unit Edge Weights

- What if edge weights are not 1?
- More complicated
Shortest Path

- Fill in missing spaces using graph below
- Use A as source vertex

![Graph](image-url)
Shortest Path

- Fill in missing spaces using graph below
- Use A as source vertex

Activity #2

2 min
Shortest Path

- Fill in missing spaces using graph below
- Use A as source vertex

1 min
Shortest Path

- Fill in missing spaces using graph below
- Use A as source vertex
Non-unit Edge Weights

<table>
<thead>
<tr>
<th>Goal Node</th>
<th>Shortest Path</th>
<th>Shortest Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>[A, C, B]</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>[A, C]</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>[A, C, B, D]</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>[A, C, B, E]</td>
<td>6</td>
</tr>
</tbody>
</table>

![Graph Diagram]

- **A** connects to **B** (4)
- **A** connects to **C** (2)
- **B** connects to **C** (3)
- **B** connects to **D** (2)
- **C** connects to **D** (4)
- **C** connects to **E** (5)
- **D** connects to **E** (1)
Shortest Path Application

- Road trip
- Anthony & Josephine want to get from PVD to SF...
- ...following limited set of highways
- Cities are nodes and highways are edges
- Get to SF using shortest path
Our Graph
What is the cost of this path?
What is the cost of this path?
Is there a shorter path?
What is the cost of this path? Is there a shorter path?
Shortest Path

- Why does BFS work with unit edges?
 - Nodes visited in order of total distance from source
- We need way to do the same even when edges have distinct weights!
- How can we do this?
 - Hint: we’ll use a data structure we’ve already seen
Shortest Path

- Use a priority queue!
 - where priorities are total distances from source
 - By visiting nodes in order returned by `removeMin()`...
 - ...you visit nodes in order of how far they are from source

- You guarantee shortest path to node because...
 - ...you don’t explore a node until all nodes closer to source have already been explored
Dijkstra’s Algorithm

- The algorithm is as follows:
 - Decorate source with distance 0 & all other nodes with ∞
 - Add all nodes to priority queue w/ distance as priority
 - While the priority queue isn’t empty
 - Remove node from queue with minimal priority
 - Update distances of the removed node’s neighbors if distances decreased
 - When algorithm terminates, every node is decorated with minimal cost from source
Dijkstra’s Algorithm Example

- **Step 1**
 - Label source with dist. 0
 - Label other vertices with dist. ∞
 - Add all nodes to Q

- **Step 2**
 - Remove node with min. priority from Q (S in this example).
 - Calculate dist. from source to removed node’s neighbors…
 - …by adding adjacent edge weights to S’s dist.
Dijkstra’s Algorithm Example

Step 3

- While Q isn’t empty,
 - repeat previous step
 - removing A this time
- Priorities of nodes in Q may have to be updated
 - ex: B’s priority

Step 4

- Repeat again by removing vertex B
- Update distances that are shorter using this path than before
 - ex: C now has a distance 6 not 10
Dijkstra’s Algorithm Example

- Step 5
 - Repeat
 - this time removing C

- Step 6
 - After removing D...
 - ...every node has been visited...
 - ...and decorated w/ shortest dist. to source
Dijkstra’s Algorithm Example

- Previous example decorated nodes with shortest distance but did not “create” paths
- How could you enhance algorithm to return the shortest path to a particular node?
 - Previous pointers!
- Let’s do another example
 - but this time without explanation
 - try to explain what the algorithm is doing at each step
Dijkstra’s Example

![Graph with nodes A, B, C, D, E and edges with weights.]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

Weights:
- A to B: 4
- A to C: 2
- B to C: 3
- B to D: 2
- B to E: 3
- C to A: 3
- C to D: 1
- D to C: 5
- D to E: 1
- E to D: 4
Dijkstra's Example

![Graph Diagram]

A

B

C

D

E

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>
Dijkstra’s Example

A

B

C

D

E

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

A to B: 4
B to C: 1
B to D: 2
B to E: 3
C to B: 3
C to D: 5
C to E: 1
D to B: 4
D to E: 1
Dijkstra’s Example

A → B: 4
B → C: 3
C → D: 4
B → D: 2
C → E: 3
D → E: 1
A → C: 2
A → E: 5
C → A: 1
D → C: 5
E → A: 6

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Dijkstra’s Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Simulate Dijkstra’s

Activity #3

2 min
Simulate Dijkstra’s

Activity #3

2 min
Simulate Dijkstra’s
Simulate Dijkstra’s
Dijkstra’s Algorithm

- Dijkstra’s algorithm is an example of a class of algorithms we previously mentioned
- Since it uses a priority queue,
 - at each step of iteration…
 - …we consider next closest node given the information we have
- What algorithm paradigm does this fall under?
function **dijkstra**(G, s):

// Input: graph G with vertices V, and source s
// Output: Nothing
// Purpose: Decorate nodes with shortest distance from s
for v in V:
 v.dist = infinity // Initialize distance decorations
 v.prev = null // Initialize previous pointers to null
s.dist = 0 // Set distance to start to 0

PQ = PriorityQueue(V) // Use v.dist as priorities
while PQ not empty:
 u = PQ.removeMin()
 for all edges (u, v): // each edge coming out of u
 if u.dist + cost(u, v) < v.dist: // cost() is weight
 v.dist = u.dist + cost(u,v) // Replace as necessary
 v.prev = u // Maintain pointers for path
 PQ.decreaseKey(v, v.dist)
function dijkstra(G, s):
 for v in V: // 1. $O(__)$
 v.dist = infinity
 v.prev = null
 s.dist = 0

 PQ = PriorityQueue(V) // 2. $O(__)$
 while PQ not empty: // 3. $O(__)$
 u = PQ.removeMin() // 4. $O(__)$
 for all edges (u, v): // 5. $O(__)$
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u, v)
 v.prev = u
 PQ.decreaseKey(v, v.dist) // 6. $O(__)$

Total: 7. $O(__)$
Runtime of Dijkstra’s w/ Heap

function \texttt{dijkstra}(G, s):
 for \(v \) in \(V \):
 // 1. \(O(__) \)
 \(v.\text{dist} = \text{infinity} \)
 \(v.\text{prev} = \text{null} \)
 \(s.\text{dist} = 0 \)

 \(\text{PQ} = \text{PriorityQueue}(V) \) // 2. \(O(__) \)

 while \(\text{PQ} \) not empty:
 // 3. \(O(__) \)
 \(u = \text{PQ}.\text{removeMin()} \) // 4. \(O(__) \)
 for all edges \((u, v)\):
 // 5. \(O(__) \)
 if \(v.\text{dist} > u.\text{dist} + \text{cost}(u, v) \):
 \(v.\text{dist} = u.\text{dist} + \text{cost}(u,v) \)
 \(v.\text{prev} = u \)
 \(\text{PQ}.\text{decreaseKey}(v, v.\text{dist}) \) // 6. \(O(__) \)

 Total:
 // 7. \(O(__) \)

Activity #3
function dijkstra(G, s):
 for v in V: // 1. O(__)
 v.dist = infinity
 v.prev = null
 s.dist = 0

 PQ = PriorityQueue(V) // 2. O(__)
 while PQ not empty: // 3. O(__)
 u = PQ.removeMin() // 4. O(__)
 for all edges (u, v): // 5. O(__)
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u, v)
 v.prev = u
 PQ.decreaseKey(v, v.dist) // 6. O(__)

 Total: 7. O(__)
function dijkstra(G, s):
 for v in V: // 1. O(__)
 v.dist = infinity
 v.prev = null
 s.dist = 0

 PQ = PriorityQueue(V) // 2. O(__)
 while PQ not empty: // 3. O(__)
 u = PQ.removeMin() // 4. O(__)
 for all edges (u, v): // 5. O(__)
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u, v)
 v.prev = u
 PQ.decreaseKey(v, v.dist) // 6. O(__)

Total: 7. O(__)
Dijkstra Runtime

function dijkstra(G, s):
 for v in V:
 v.dist = infinity
 v.prev = null
 s.dist = 0
 PQ = PriorityQueue(V)
 while PQ not empty:
 u = PQ.removeMin()
 for all edges (u, v):
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u,v)
 v.prev = u
 PQ.decreaseKey(v, v.dist)
Dijkstra Runtime

- Depends on priority queue implementation
- If PQ implemented with Array or Linked List
 - `insert()` is $O(1)$
 - `removeMin()` is $O(|V|)$
 - you have to scan to find min-priority element
 - `decreaseKey()` is $O(1)$
 - you already have node when you change its key
function \texttt{dijkstra}(G, s):
 for v in V:
 v.dist = infinity
 v.prev = null
 s.dist = 0

PQ = PriorityQueue(V)
while PQ not empty:
 u = PQ.removeMin()
 for all edges (u, v):
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u, v)
 v.prev = u
 PQ.decreaseKey(v, v.dist)
Dijkstra Runtime w/ Array or List

- If PQ implemented with Array or Linked List
 - $O(|V| + |V| + |V|^2 + |E|) = O(|V|^2 + |E|)$
 - $= O(|V|^2)$
 - since $|E| \leq |V|^2$
Dijkstra Runtime w/ Heap

- If PQ implemented with Heap
 - `insert()` is $O(\log |V|)$
 - you may need to upheap
 - `removeMin()` is $O(\log |V|)$
 - you may need to downheap
 - `decreaseKey()` is $O(\log |V|)$
 - you may need to upheap
 - (assume map from value to entry)
function dijkstra(G, s):
 for v in V:
 v.dist = infinity
 v.prev = null
 s.dist = 0

 PQ = PriorityQueue(V)
 while PQ not empty:
 u = PQ.removeMin()
 for all edges (u, v):
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u,v)
 v.prev = u
 PQ.decreaseKey(v, v.dist)
Dijkstra Runtime w/ Heap

- If PQ implemented with Heap

\[
O(|V| + |V| \log |V| + |V| \log |V| + |E| \log |V|)
\]

\[
= O(|V| + |V| \log |V| + |E| \log |V|)
\]

\[
= O\left((|V| + |E|) \cdot \log |V| \right)
\]

- Note
 - though the \(O(|E|) \) loop is nested in the \(O(|V|) \) loop
 - we visit each edge at most twice rather than \(|V|\) times
 - That’s why while loop is \(O\left((V \log |V|) + (|E| \log |V|) \right) \)
Dijkstra’s on Graph with Negative Edges

Activity #5
Dijkstra's on Graph with Negative Edges

Activity #5

Activity #5
Dijkstra’s on Graph with Negative Edges

Start
A
B
C
D
End

Activity #5

0 min
Dijkstra isn’t perfect!

- We can find shortest path on weighted graph in
 - $O((|V| + |E|) \times \log |V|)$
 - or can we…
- Dijkstra fails with negative edge weights

- Returns $[A, C, D]$ when it should return $[A, B, C, D]$
Negative Edge Weights

- Negative edge weights are a problem for Dijkstra.
- But negative cycles are even worse!
 - because there is no true shortest path!
Bellman-Ford Algorithm

- Algorithm that handles graphs with negative edge weights
- Similar to Dijkstra’s but more robust
 - Returns same output as Dijkstra’s for any graph with only positive edge weights (but runs slower)
 - Returns correct shortest paths for graphs with negative edge weights