A problem

› We have a collection of **tasks** we want to accomplish
 › Some tasks depend on other tasks
 › Some are independent
› In what **order** should I do these tasks?
› Example: I make really good burritos
 › Need to chop an onion before sautéing it
 › But, can sauté onion and cook rice simultaneously
 › **BAD**: sauté onions, chop onions, cook rice
 › **GOOD**: chop onions, cook rice, sauté onions
Directed Acyclic Graphs

- A DAG is **directed** & **acyclic**
 - Directed
 - edges have origin & destination…
 - ….represented by a directed arrow
 - Acyclic
 - No cycles!
 - Starting from any vertex, there is no path that leads back to the same vertex
Trees and DAGs

- All trees are DAGs
- **Not** all DAGs are trees!
Trees and DAGs

- All trees are DAGs
- \textbf{Not} all DAGs are trees!
Trees and DAGs

- All trees are DAGs
- **Not** all DAGs are trees!
Trees and DAGs

- All trees are DAGs
- **Not** all DAGs are trees!
Trees and DAGs

- All trees are DAGs
- **Not** all DAGs are trees!

[Diagram showing a DAG with nodes A, B, C, D and an edge from D to B, indicating it is not a DAG.]
Which are DAGs?
Directed Acyclic Graphs

- DAGs often used to model situations in which completing certain things depend on completing other things
 - ex: course prerequisites or small tasks in a big project

- Terminology
 - Sources: vertices with no incoming edges (no dependencies)
 - Sinks: vertices with no outgoing edges
 - In-degree of a vertex: number of incoming edges of the vertex
 - Out-degree of a vertex: number of outgoing edges of the vertex
Directed Acyclic Graphs — Example

Source

Sink
Topological Sort

- Imagine you are a CS concentrator
- You need to plan your courses for next 3 years
- How can you do that taking into account pre-requisites?
 - Represent courses w/ a DAG
 - Use topological sort!
 - Produces topological ordering of a DAG
Topological Sort

- Topological Ordering
 - ordering of vertices in DAG...
 - …such that for each vertex v...
 - …all of v's prereqs come before it in the ordering

- Topological Sort
 - Algorithm that produces topological ordering given a DAG

- Valid topological orderings
 - 15, 16, 22, 141
Topological Sort

- Topological Ordering
 - ordering of vertices in DAG...
 - …such that for each vertex v…
 - …all of v's prereqs come before it in the ordering

- Topological Sort
 - Algorithm that produces topological ordering given a DAG

- Valid topological orderings
 - 15, 16, 22, 141
 - 22, 15, 16, 141
 - 15, 22, 16, 141
Topological Sort—General Strategy

- If vertex has no prerequisites (i.e., is a source), we can visit it!
- Once we visit a vertex,
 - all of it's outgoing edges can be deleted
 - because that prerequisite has been satisfied
- Deleting edges might create new sources
 - which we can now visit
- Data Structures needed
 - DAG to top-sort
 - A structure to keep track of sources
 - A list to keep track of the resultant topological ordering
Topological Sort—Simulation

List:

Stack
Topological Sort—Simulation

Populate Stack with source vertices

List:
Topological Sort—Simulation

Pop from stack and add to list

Stack

List: 15
Topological Sort—Simulation

Remove outgoing edges & check corresponding vertices

List: 15
Topological Sort—Simulation

16 has no more incoming edges so push it on the stack
Topological Sort—Simulation

Pop from the stack and add to list

List: 15 16

Stack

22
141
33
123
224

15
16
22
Topological Sort—Simulation

Remove outgoing edges & check the corresponding vertices
Topological Sort—Simulation

33 has no more incoming edges so push it onto the stack
141 still has an incoming edge

List: 15 16

Stack:

22

141

33

123

224

of incoming edges = 1
Topological Sort—Simulation

Pop from the stack & repeat!

List: 15 16 33

Stack: 22
Topological Sort—Simulation

List: 15 16 33

Stack

22

141

123

224

22
Topological Sort—Simulation
Topological Sort—Simulation

List: 15 16 33 123

Stack: 22 224

Diagram showing the topological sort process, with nodes labeled 15, 16, 33, 123, 22, 141, and 224.
Topological Sort—Simulation

List: 15 16 33 123

Stack: 22

15

16

33

141

123

224

224

22
Topological Sort—Simulation

List: 15 16 33 123 224

Stack: 22
Topological Sort—Simulation

List: 15 16 33 123 224 22

Stack
Topological Sort—Simulation

List: 15 16 33 123 224 22
Topological Sort—Simulation

We're done!
Topological Sort Pseudo-code

function top_sort(graph g):
 // Input: A DAG g
 // Output: A list of vertices of g, in topological order
 s = Stack()
l = List()

 for each vertex in g:
 if vertex is source:
 s.push(vertex)

 while s is not empty:
 v = s.pop()
 l.append(v)
 for each outgoing edge e from v:
 w = e.destination
 delete e
 if w is a source:
 s.push(w)

 return l
Topological Sort Runtime

function \texttt{top_sort}(\texttt{graph} \; \texttt{g}):

 // Input: A DAG \texttt{g}
 // Output: A list of vertices of \texttt{g}, in topological order
 \texttt{s} = \texttt{Stack}()
 \texttt{l} = \texttt{List}()

 \textbf{for each vertex in} \; \texttt{g}:
 \textbf{if} vertex is source:
 \texttt{s.push}(vertex)

 \textbf{while} \texttt{s} is not empty:
 \texttt{v} = \texttt{s.pop}()
 \texttt{l.append} (\texttt{v})

 \textbf{for each outgoing edge} \; \texttt{e} from \texttt{v}:
 \texttt{w} = \texttt{e} . destination
 \texttt{delete} \; \texttt{e}
 \textbf{if} \; \texttt{w} is a source:
 \texttt{s.push} (\texttt{w})

 \textbf{return} \texttt{l}

Looping through every vertex to find sources is \textbf{O} (|V|)
Topological Sort Runtime

function top_sort(graph g):
 // Input: A DAG g
 // Output: A list of vertices of g, in topological order
 s = Stack()
 l = List()
 for each vertex in g:
 if vertex is source:
 s.push(vertex)
 while s is not empty:
 v = s.pop()
 l.append(v)
 for each outgoing edge e from v:
 w = e.destination
 delete e
 if w is a source:
 s.push(w)
 return l

Looping through every vertex to find sources is $O(|V|)$

Stack will hold each vertex once

At each iteration we only visit outgoing edges from popped vertex. So every edge visited once.

Total runtime: $O(|V| + |E|)$
Topological Sort Variations

- What if we're not allowed to modify original DAG?
 - How do we delete edges?
 - Use decorations!
- Start by decorating each vertex with its in-degree
 - Instead of deleting edge
 - decrement in-degree of destination vertex by 1
 - then push vertex on stack when in-degree is 0!
Topological Sort Pseudo-code

function **top_sort**(graph g):

// Input: A DAG g
// Output: A list of vertices of g, in topological order
s = Stack()
l = List()
for each vertex in g:
 if vertex is source:
 s.push(vertex)
while s is not empty:
 v = s.pop()
l.append(v)
 for each outgoing edge e from v:
 w = e.destination
 delete e
 if w is a source:
 s.push(w)
return l

What would happen if we used a different data structure?
Topological Sort—Simulation

List: 15 16 33

Stack: 123 22 224

15 → 16 → 33 → 22 → 141 → 123 → 224
Topological Sort Variations

- Do we need to use a stack?
 - No! Any data structure like a list or queue would work
 - All we're doing is keeping track of sources
- Different structures might yield different topological orderings
 - Why do they all work?
 - Vertices are only added to structure when they become a source
 - i.e., when all of its "prerequisites" have been visited
 - This invariant is maintained throughout algorithm…
 - …and guarantees a valid topological ordering!
Top Sort: Why only on DAGs?

- If the graph has a cycle...
- ...we don't have a valid topological ordering
- We can use top sort to check if a DAG has a cycle
- Run top sort on graph
 - if there are edges left at the end but no more sources
 - then there must be a cycle