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A problem
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‣ We have a collection of tasks we want to accomplish

‣ Some tasks depend on other tasks

‣ Some are independent

‣ In what order should I do these tasks?

‣ Example: I make really good burritos

‣ Need to chop an onion before sautéing it

‣ But, can sauté onion and cook rice simultaneously

‣ BAD: sauté onions, chop onions, cook rice

‣ GOOD: chop onions, cook rice, sauté onions



Directed Acyclic Graphs
‣ A DAG  is directed & 

acyclic

‣ Directed
‣ edges have origin & destination… 

‣ ….represented by a directed arrow 

‣ Acyclic 
‣ No cycles! 

‣ Starting from any vertex,  
there is no path that leads  
back to the same vertex
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Trees and DAGs
‣ All trees are DAGs

‣ Not all DAGs are 
trees!
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Trees and DAGs
‣ All trees are DAGs

‣ Not all DAGs are 
trees!
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Which are DAGs?
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Directed Acyclic Graphs
‣ DAGs often used to model situations in which 

completing certain things depend on completing other 
things 
‣ ex: course prerequisites or small tasks in a big project

‣  Terminology
‣ Sources: vertices with no incoming edges (no dependencies)
‣ Sinks: vertices with no outgoing edges 
‣ In-degree of a vertex: number of incoming edges of the vertex
‣ Out-degree of a vertex: number of outgoing edges of the 

vertex
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Directed Acyclic Graphs — Example
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Topological Sort
‣ Imagine you are a CS concentrator
‣ You need to plan your courses for next 3 years
‣ How can you do that taking into account pre-

requisites?
‣ Represent courses w/ a DAG
‣ Use topological sort!
‣ Produces topological ordering of a DAG
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Topological Sort
‣ Topological Ordering 
‣ ordering of vertices in DAG… 

‣ …such that for each vertex v…

‣ …all of v's prereqs come 
before it in the ordering

‣ Topological Sort  
‣ Algorithm that produces 

topological ordering  
given a DAG
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Topological Sort
‣ Topological Ordering 
‣ ordering of vertices in DAG… 

‣ …such that for each vertex v…

‣ …all of v's prereqs come 
before it in the ordering

‣ Topological Sort  
‣ Algorithm that produces 

topological ordering  
given a DAG
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‣ Valid topological orderings
‣ 15,16,22,141
‣ 22,15,16,141
‣ 15,22,16,141



Topological Sort—General  Strategy
‣ If vertex has no prerequisites (i.e., is a source), we can visit it!
‣ Once we visit a vertex, 

‣ all of it's outgoing edges can be deleted 
‣ because that prerequisite has been satisfied

‣ Deleting edges might create new sources 
‣ which we can now visit

‣ Data Structures needed
‣ DAG to top-sort
‣ A structure to keep track of sources
‣ A list to keep track of the resultant topological ordering
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Topological Sort—Simulation
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17



Topological Sort—Simulation
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Topological Sort—Simulation
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Topological Sort—Simulation
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Topological Sort—Simulation
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Topological Sort—Simulation
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Topological Sort—Simulation
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Topological Sort—Simulation
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Topological Sort Pseudo-code

33

function top_sort(graph g):
// Input: A DAG g
// Output: A list of vertices of g, in topological order
s = Stack()
l = List()
for each vertex in g:

if vertex is source:
s.push(vertex)

while s is not empty:
v = s.pop()
l.append(v)
for each outgoing edge e from v:

w = e.destination
delete e
if w is a source:

s.push(w)
return l



Topological Sort Runtime
‣ Consider the major steps of the algorithm:
‣ Adding all sources from the set of graph vertices to 

a stack

‣ Going through the stack while it's not empty:

‣ Pop from stack & push to output list

‣ For every edge outgoing from the popped 
vertex:

‣
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function top_sort(graph g):
// Input: A DAG g
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while s is not empty:
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Looping through every 
vertex to find sources is 

O(|V|)
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function top_sort(graph g):
// Input: A DAG g
// Output: A list of vertices of g, in topological order
s = Stack()
l = List()
for each vertex in g:

if vertex is source:
s.push(vertex)

while s is not empty:
v = s.pop()

    l.append(v)
    for each outgoing edge e from v:

 w = e.destination
  delete e

 if w is a source:
   s.push(w)
return l

Looping through every 
vertex to find sources is 

O(|V|)

Stack will hold each vertex once 

At each iteration we only 
visit outgoing edges from 
popped vertex. So every 

edge visited once.

Total runtime: 
O(|V|+|E|)



Topological Sort  Variations
‣ What if we're not allowed to modify original DAG?
‣ How do we delete edges? 
‣ Use decorations!

‣ Start by decorating each vertex with its in-degree 
‣ Instead of deleting edge 

‣ decrement in-degree of destination vertex by 1

‣ then push vertex on stack when in-degree is 0!
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Topological Sort Pseudo-code
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function top_sort(graph g):
// Input: A DAG g
// Output: A list of vertices of g, in topological order
s = Stack()
l = List()
for each vertex in g:

if vertex is source:
s.push(vertex)

while s is not empty:
v = s.pop()
l.append(v)
for each outgoing edge e from v:

w = e.destination
delete e
if w is a source:

s.push(w)
return l

What would happen if we 
used a different data 

structure?



Topological Sort—Simulation
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Topological Sort  Variations
‣ Do we need to use a stack?

‣ No! Any data structure like a list or queue would work 
‣ All we're doing is keeping track of sources

‣ Different structures might yield different topological 
orderings 
‣ Why do they all work ? 
‣ Vertices are only added to structure when they become a source 

‣ i.e., when all of its "prerequisites" have been visited 

‣  This invariant is maintained throughout algorithm… 
‣ …and guarantees a valid topological ordering!
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Top Sort:  Why only on DAGs ?
‣ If the graph has a cycle…

‣ …we don't have a valid topological ordering
‣ We can use top sort to check if a DAG has a cycle 
‣ Run top sort on graph 
‣ if there are edges left at the end but no more sources 
‣ then there must be a cycle

40

Job Experience


