Directed Acyclic Graphs
& lopological Sort

CSlé: Introduction to Data Structures & Algorithms

A problem

» Ve have a collection of tasks we want to accomplish
» Some tasks depend on other tasks
» Some are Independent

» In what order should | do these tasks!

» Example: | make really good burrrtos

» Need to chop an onion before sautéing it ryJ .
» But, can saute onion and cook rice simultaneously
» BAD: saute onions, chop onions, cook rice

» GOOD: chop onions, cook rice, saute onions

7

Directed Acyclic Graphs

» A DAG Is directed &
acyclic

» Directed @ :

Directed Undirected
» edges have origin & destination. ..

»represented by a directed arrow

» Acyclic @\ @\

» No cycles!
» Starting from any vertex, @// @2
s B

there I1s no path that leads
back to the same vertex

Cyclic Acyclic Cyclic

Trees and DAGs
» All trees are DAGS / \

» Not all DAGs are

trees! /

Tree

Trees and DAGS

» All trees are DAGS

» Not all DAGs are
trees

Trees and DAGs
(»)
» All trees are DAGS /

» Not all DAGs are @

trees! V

@ DAG

Trees and DAGS

» All trees are DAGs /
» Not all DAGs are

trees! /

DAG

Trees and DAGS

» All trees are DAGs /
» Not all DAGs are @

trees! /
©

NOT a DAG

VWhich are DAGS!

Y

T
<A F

Directed Acyclic Graphs

» DAGs often used to model situations in which
completing certain things depend on completing other
things

» ex: course prerequisites or small tasks in a big project
» lerminology
» Sources: vertices with no iIncoming edges (no dependencies)
» Sinks: vertices with no outgoing edges
» In-degree of a vertex: number of iIncoming edges of the vertex

» Out-degree of a vertex: number of outgoing edges of the
vertex

Directed Acyclic Graphs — Example

JTopological Sort

» Imagine you are a CS concentrator
» You need to plan your courses for next 3 years

» How can you do that taking into account pre-
requisites!

» Represent courses w/ a DAG

» Use topological sort!

» Produces topological ordering of a DAG

JTopological Sort
» Topological Ordering (:)
» ordering of vertices in DAG...
» ...such that for each vertex v... /
» ...all of V's preregs come @__—)
before It In the ordering

» Jopological Sort
» Valid topological orderings

» Algorithm that produces
» 15,16, 22 1Nl

topological ordering
oiven a DAG

JTopological Sort

» Topological Ordering @\
» ordering of vertices in DAG...
» ...such that for each vertex v...
——-).
» ...all of V's preregs come @ @
before It In the ordering

» Valid topological orderings
15, 16,:22:, 148l
»- 22, 15, 165, 148

» Jopological Sort

» Algorithm that produces

topological ordering
given a DAG 155, 22, 168

Jopological Sort—(General Strategy

» IT vertex has no prerequisites (l.e., IS a source), we can visit It!

» Once we visit a vertex,

» all of it's outgoing edges can be deleted

» because that prerequisite has been satisfied

» Deleting edges might create new sources

» which we can now Visit

» Data Structures needed
» DAG to top-sort
» A structure to keep track of sources

» A list to keep track of the resultant topological ordering

15

Jopological Sort—>Simulation

@\

®—a
\@

~o—@

Stack

List:

Jopological Sort—>Simulation

Populate Stack with source vertices

@\

ool

9
~o—@

B

Stack

List:

Jopological Sort—>Simulation

Pop from stack and add to list

@\

®—a
\@

S@—a@ (22)

Stack

List: @

Jopological Sort—>Simulation

Remove outgoing edges & check corresponding vertices

Stack

Jopological Sort—>Simulation

|6 has no more Incoming edges so push it on the stack

o o
-
@—@ @

20

Jopological Sort—>Simulation

Pop from the stack and add to list

(155

Stack

List: @

Jopological Sort—>Simulation

Remove outgoing edges & check the corresponding vertices

22

@ -

(155

Stack

List: @

)

Jopological Sort—>Simulation

33 has no more iIncoming edges so push it onto the stack
|41 still has an iIncoming edge

€5
S@—a@ (22)

Stack

List: @

25

Jopological Sort—>Simulation

Pop from the stack & repeat!

@\

(15D

Stack

List: @ @

Jopological Sort—>Simulation

Stack

Jopological Sort—>Simulation

8
3
o

Stack

Jopological Sort—>Simulation

Stack

IJst:<:::)‘l!ID(:::>(::;3

Jopological Sort—>Simulation

Stack

Lis: @D @ G @
28

Jopological Sort—>Simulation

23 (22

Stack

IJst:<:::)‘I!ID<:::>(::;3“!!9'

Jopological Sort—>Simulation

23

Stack

Lhm:<:::)1llib<:::>(::231£!!D<:::>

Jopological Sort—>Simulation

(22

(155

(33
23

Stack

Lis: @ @ G @ @ @
31

Jopological Sort—>Simulation

We're donel

23

Stack

Lis: @) @ G @ @ @ @
57

JTopological Sort Pseudo-code

function top sort(graph g):
// Input: A DAG g
// Output: A list of vertices of g, in topological order
s = Stack()
1l = List()
for each vertex in g:
1f vertex 1s source:
s .push(vertex)
while s 1s not empty:
= 8.pop()
l.append(v)

for each outgoing edge e from v:

w = e.destination
delete e
if w 1s a source:
s .push(w)
return 1

B5)

Jopological Sort Runtime

function top sort(graph g):
// Input: A DAG g
// Output: A list of vertices of g, in topological order
s = Stack()
1 = List() Looping through every
for each vertex in g: vertex to find sources Is
1f vertex 1s source: O(|\7|)

s .push(vertex)
while s 1s not empty:
v = s.pop()
l.append(v)
for each outgoing edge e from v:
w = e.destination
delete e
if w 1s a source:
s.push (w)
return 1

D2}

Jopological Sort Runtime

function top sort(graph g):
// Input: A DAG g
// Output: A list of vertices of g, in topological order
s = Stack()
1 = List() Looping through every
for each vertex in g: vertex to find sources Is
1f vertex 1s source: O(|\7|)

s .push(vertex)

while s 1s not empty:
v = s.pop()
l.append(Vv)

for each outgoing edge e from v: «--

Stack will hold each vertex once

At each rteration we only

visit outgoing edges from

popped vertex. So every
edge visited once.

w = e.destination
delete e
if w 1is a source:
s.push (w)
return 1

Jlopological Sort Variations

» What if we're not allowed to modify original DAG!?
» How do we delete edges!

» Use decorations!
» Start by decorating each vertex with its in-degree

» Instead of deleting edge
» decrement in-degree of destination vertex by 1

» then push vertex on stack when in-degree Is 0!

36

JTopological Sort Pseudo-code

function top sort(graph g):
// Input: A DAG g
// Output: A list of vertices of g, in topological order

s = Stack()w

1 = List() What would happen If we

for each vertex in g: used a different data
if vertex is source: structure!

s .push(vertex)
while s 1s not empty:
v = s.pop()
l.append(v)
for each outgoing edge e from v:
w = e.destination
delete e
if w 1s a source:
s.push (w)
return 1

B

Jopological Sort—>Simulation

8
3
o

Stack

Jlopological Sort Variations

» Do we need to use a stack?

» No! Any data structure like a list or queue would work

» All we're doing Is keeping track of sources

» Different structures might yield different topological
orderings

» Why do they all work ?

» Vertices are only added to structure when they become a source

» L.e., when all of its "prerequisites’ have been visited
» This invariant 1s maintained throughout algorithm. ..

» ...and guarantees a valid topological ordering!

57

Top Sort: Why only on DAGs !

» |f the graph has a cycle...

—
o Experience

» ...we don't have a valid topological ordering
» We can use top sort to check if a DAG has a cycle
» Run top sort on graph
PRI RliEierare edges [eft at the end DUt homereiselie=

il hiEthere must bera cycle

40

