
Directed Acyclic Graphs
& Topological Sort

CS16: Introduction to Data Structures & Algorithms

Summer 2021

A problem

2

‣ We have a collection of tasks we want to accomplish

‣ Some tasks depend on other tasks

‣ Some are independent

‣ In what order should I do these tasks?

‣ Example: I make really good burritos

‣ Need to chop an onion before sautéing it

‣ But, can sauté onion and cook rice simultaneously

‣ BAD: sauté onions, chop onions, cook rice

‣ GOOD: chop onions, cook rice, sauté onions

Directed Acyclic Graphs
‣ A DAG is directed &

acyclic

‣ Directed
‣ edges have origin & destination…

‣ ….represented by a directed arrow

‣ Acyclic
‣ No cycles!

‣ Starting from any vertex,
there is no path that leads
back to the same vertex

Directed Undirected

A B A B

AcyclicCyclic Cyclic

A
B

D

C

A
B

D

C

A B

Trees and DAGs
‣ All trees are DAGs

‣ Not all DAGs are
trees!

A

B

D

C

Tree

Trees and DAGs
‣ All trees are DAGs

‣ Not all DAGs are
trees!

A

B

D

C

DAG

Trees and DAGs
‣ All trees are DAGs

‣ Not all DAGs are
trees!

A

B

D

C

DAG

Trees and DAGs
‣ All trees are DAGs

‣ Not all DAGs are
trees!

A

B

D

C

DAG

Trees and DAGs
‣ All trees are DAGs

‣ Not all DAGs are
trees!

A

B

D

C

NOT a DAG

Which are DAGs?

A

A

B

D
C

A

B

D

C

A

B

D

C

1 2

3 4

Directed Acyclic Graphs
‣ DAGs often used to model situations in which

completing certain things depend on completing other
things
‣ ex: course prerequisites or small tasks in a big project

‣ Terminology
‣ Sources: vertices with no incoming edges (no dependencies)
‣ Sinks: vertices with no outgoing edges
‣ In-degree of a vertex: number of incoming edges of the vertex
‣ Out-degree of a vertex: number of outgoing edges of the

vertex
10

Directed Acyclic Graphs — Example

11

22

141

33

16

123 224

15

Source

Sink

Topological Sort
‣ Imagine you are a CS concentrator
‣ You need to plan your courses for next 3 years
‣ How can you do that taking into account pre-

requisites?
‣ Represent courses w/ a DAG
‣ Use topological sort!
‣ Produces topological ordering of a DAG

12

Topological Sort
‣ Topological Ordering
‣ ordering of vertices in DAG…

‣ …such that for each vertex v…

‣ …all of v's prereqs come
before it in the ordering

‣ Topological Sort
‣ Algorithm that produces

topological ordering
given a DAG

13

22

141

1615

‣ Valid topological orderings
‣ 15,16,22,141

Topological Sort
‣ Topological Ordering
‣ ordering of vertices in DAG…

‣ …such that for each vertex v…

‣ …all of v's prereqs come
before it in the ordering

‣ Topological Sort
‣ Algorithm that produces

topological ordering
given a DAG

14

22

141

1615

‣ Valid topological orderings
‣ 15,16,22,141
‣ 22,15,16,141
‣ 15,22,16,141

Topological Sort—General Strategy
‣ If vertex has no prerequisites (i.e., is a source), we can visit it!
‣ Once we visit a vertex,

‣ all of it's outgoing edges can be deleted
‣ because that prerequisite has been satisfied

‣ Deleting edges might create new sources
‣ which we can now visit

‣ Data Structures needed
‣ DAG to top-sort
‣ A structure to keep track of sources
‣ A list to keep track of the resultant topological ordering

15

Topological Sort—Simulation

16

22

141

33

16

123 224

15

Stack

List:

22

141

33

16

123 224

15

Stack

List:

15

22

Populate Stack with source vertices

Topological Sort—Simulation

17

Topological Sort—Simulation

18

22

141

33

16

123 224

15

Stack

List: 15

22

Pop from stack and add to list

Topological Sort—Simulation

19

22

141

33

16

123 224

15

Stack

List: 15

22

Remove outgoing edges & check corresponding vertices

Topological Sort—Simulation

20

22

141

33

123 224

15

Stack

List: 15

22

16 has no more incoming edges so push it on the stack

16

16

Topological Sort—Simulation

21

22

141

33

123 224

15

Stack

List: 15

22

Pop from the stack and add to list

16

16

Topological Sort—Simulation

22

22

141

33

123 224

15

Stack

List: 15

22

Remove outgoing edges & check the corresponding vertices

16

16

Topological Sort—Simulation

23

22

141

33

123 224

15

Stack

List: 15

22

33 has no more incoming edges so push it onto the stack
141 still has an incoming edge

16

16

33

of incoming edges = 1

Topological Sort—Simulation

24

22

141

33

123 224

15

Stack

List: 15

22

Pop from the stack & repeat!

16

16 33

Topological Sort—Simulation

25

22

141

33

123 224

15

Stack

List: 15

22

16

16 33

Topological Sort—Simulation

26

22

141

33

123 224

15

Stack

List: 15

22

16

16 33

123

Topological Sort—Simulation

27

22

141

33

123 224

15

Stack

List: 15

22

16

16 33 123

Topological Sort—Simulation

28

22

141

33

123 224

15

Stack

List: 15

22

16

16 33 123

224

Topological Sort—Simulation

29

22

141

33

123 224

15

Stack

List: 15

22

16

16 33 123 224

Topological Sort—Simulation

30

22

141

33

123 224

15

Stack

List: 15 22

16

16 33 123 224

Topological Sort—Simulation

31

22

141

33

123 224

15

Stack

List: 15 22

16

16 33 123 224

141

Topological Sort—Simulation

32

22

141

33

123 224

15

Stack

List: 15 22

16

16 33 123 224 141

We're done!

Topological Sort Pseudo-code

33

function top_sort(graph g):
// Input: A DAG g
// Output: A list of vertices of g, in topological order
s = Stack()
l = List()
for each vertex in g:

if vertex is source:
s.push(vertex)

while s is not empty:
v = s.pop()
l.append(v)
for each outgoing edge e from v:

w = e.destination
delete e
if w is a source:

s.push(w)
return l

Topological Sort Runtime
‣ Consider the major steps of the algorithm:
‣ Adding all sources from the set of graph vertices to

a stack

‣ Going through the stack while it's not empty:

‣ Pop from stack & push to output list

‣ For every edge outgoing from the popped
vertex:

‣
34

function top_sort(graph g):
// Input: A DAG g
// Output: A list of vertices of g, in topological order
s = Stack()
l = List()
for each vertex in g:

if vertex is source:
s.push(vertex)

while s is not empty:
v = s.pop()

 l.append(v)
 for each outgoing edge e from v:

 w = e.destination
 delete e

 if w is a source:
 s.push(w)
return l

Looping through every
vertex to find sources is

O(|V|)

Topological Sort Runtime
‣ Consider the major steps of the algorithm:
‣ Adding all sources from the set of graph vertices to

a stack

‣ Going through the stack while it's not empty:

‣ Pop from stack & push to output list

‣ For every edge outgoing from the popped
vertex:

‣
35

function top_sort(graph g):
// Input: A DAG g
// Output: A list of vertices of g, in topological order
s = Stack()
l = List()
for each vertex in g:

if vertex is source:
s.push(vertex)

while s is not empty:
v = s.pop()

 l.append(v)
 for each outgoing edge e from v:

 w = e.destination
 delete e

 if w is a source:
 s.push(w)
return l

Looping through every
vertex to find sources is

O(|V|)

Stack will hold each vertex once

At each iteration we only
visit outgoing edges from
popped vertex. So every

edge visited once.

Total runtime:
O(|V|+|E|)

Topological Sort Variations
‣ What if we're not allowed to modify original DAG?
‣ How do we delete edges?
‣ Use decorations!

‣ Start by decorating each vertex with its in-degree
‣ Instead of deleting edge

‣ decrement in-degree of destination vertex by 1

‣ then push vertex on stack when in-degree is 0!

36

Topological Sort Pseudo-code

37

function top_sort(graph g):
// Input: A DAG g
// Output: A list of vertices of g, in topological order
s = Stack()
l = List()
for each vertex in g:

if vertex is source:
s.push(vertex)

while s is not empty:
v = s.pop()
l.append(v)
for each outgoing edge e from v:

w = e.destination
delete e
if w is a source:

s.push(w)
return l

What would happen if we
used a different data

structure?

Topological Sort—Simulation

38

22

141

33

123 224

15

Stack

List: 15

22

16

16 33

123

Topological Sort Variations
‣ Do we need to use a stack?

‣ No! Any data structure like a list or queue would work
‣ All we're doing is keeping track of sources

‣ Different structures might yield different topological
orderings
‣ Why do they all work ?
‣ Vertices are only added to structure when they become a source

‣ i.e., when all of its "prerequisites" have been visited

‣ This invariant is maintained throughout algorithm…
‣ …and guarantees a valid topological ordering!

39

Top Sort: Why only on DAGs ?
‣ If the graph has a cycle…

‣ …we don't have a valid topological ordering
‣ We can use top sort to check if a DAG has a cycle
‣ Run top sort on graph
‣ if there are edges left at the end but no more sources
‣ then there must be a cycle

40

Job Experience

