Directed Acyclic Graphs & Topological Sort

CS16: Introduction to Data Structures & Algorithms

Spring 2020
Outline

- Directed Acyclic Graphs
- Topological Sort
 - Hand-simulation
 - Pseudo-code
 - Runtime analysis
Directed Acyclic Graphs

- A DAG is **directed** & **acyclic**
- Directed
 - edges have origin & destination…
 - ….represented by a directed arrow
- Acyclic
 - No cycles!
 - Starting from any vertex, there is no path that leads back to the same vertex
Trees and DAGs

- All trees are DAGs
- **Not** all DAGs are trees!
Trees and DAGs

- All trees are DAGs
- **Not** all DAGs are trees!
Trees and DAGs

- All trees are DAGs
- **Not** all DAGs are trees!
Trees and DAGs

- All trees are DAGs
- **Not** all DAGs are trees!
Trees and DAGs

- All trees are DAGs
- **Not** all DAGs are trees!

![Diagram showing NOT a DAG]
Directed Acyclic Graphs

- DAGs often used to model situations in which completing certain things depend on completing other things
 - ex: course prerequisites or small tasks in a big project

- Terminology
 - Sources: vertices with no incoming edges (no dependencies)
 - Sinks: vertices with no outgoing edges
 - In-degree of a vertex: number of incoming edges of the vertex
 - Out-degree of a vertex: number of outgoing edges of the vertex
Directed Acyclic Graphs — Example
Topological Sort

- Imagine you are a CS concentrator
- You need to plan your courses for next 3 years
- How can you do that taking into account pre-requisites?
 - Represent courses w/ a DAG
 - Use topological sort!
 - Produces topological ordering of a DAG
Topological Sort

- Topological Ordering
 - ordering of vertices in DAG...
 - …such that for each vertex v…
 - …all of v's prereqs come before it in the ordering
- Topological Sort
 - Algorithm that produces topological ordering given a DAG

- Valid topological orderings
 - 15, 16, 22, 141
 - 22, 15, 16, 141
 - 15, 22, 16, 141
Topological Sort—General Strategy

- If vertex has no prerequisites (i.e., is a source), we can visit it!
- Once we visit a vertex,
 - all of it's outgoing edges can be deleted
 - because that prerequisite has been satisfied
- Deleting edges might create new sources
 - which we can now visit
- Data Structures needed
 - DAG to top-sort
 - A structure to keep track of sources
 - A list to keep track of the resultant topological ordering
Topological Sort—Simulation

List:

Stack
Populate Stack with source vertices

List:
Topological Sort—Simulation

Pop from stack and add to list

List: 15
Topological Sort—Simulation

Remove outgoing edges & check corresponding vertices

List: 15

Stack
Topological Sort—Simulation

16 has no more incoming edges so push it on the stack
Topological Sort—Simulation

Pop from the stack and add to list

List: 15 16

Stack

22
141
33
123
224

15
16
22
Topological Sort—Simulation

Remove outgoing edges & check the corresponding vertices

List: 15 16

Stack
Topological Sort—Simulation

33 has no more incoming edges so push it onto the stack
141 still has an incoming edge

List: 15 16

Stack

of incoming edges = 1
Topological Sort—Simulation

Pop from the stack & repeat!

List: 15 16 33

Stack
Topological Sort—Simulation

List: 15 16 33

Stack

22
141

15 16 33

123
224

22
Topological Sort—Simulation

List: 15 16 33

Stack:

123 224
123
Topological Sort—Simulation
Topological Sort—Simulation

List: 15 16 33 123

Stack: 22 224 224 22
Topological Sort—Simulation

List: 15 16 33 123 224

Stack
Topological Sort—Simulation

List: 15 16 33 123 224 22

Stack
Topological Sort—Simulation

List: 15 16 33 123 224 22

Stack 141

22

141

16

33

123

224

141
Topological Sort—Simulation

We're done!
function **top_sort**(graph g):
 // Input: A DAG g
 // Output: A list of vertices of g, in topological order
 s = Stack()
 l = List()
 for each vertex in g:
 if vertex is source:
 s.push(vertex)
 while s is not empty:
 v = s.pop()
 l.append(v)
 for each outgoing edge e from v:
 w = e.destination
 delete e
 if w is a source:
 s.push(w)
 return l
Topological Sort Runtime

```python
function top_sort(graph g):
    // Input: A DAG g
    // Output: A list of vertices of g, in topological order
    s = Stack()
    l = List()
    for each vertex in g:
        if vertex is source:
            s.push(vertex)
    while s is not empty:
        v = s.pop()
        l.append(v)
        for each outgoing edge e from v:
            w = e.destination
            delete e
            if w is a source:
                s.push(w)
    return l
```

Looping through every vertex to find sources is $O(|V|)$.
Topological Sort Runtime

function top_sort(graph g):
 // Input: A DAG g
 // Output: A list of vertices of g, in topological order
 s = Stack()
 l = List()
 for each vertex in g:
 if vertex is source:
 s.push(vertex)
 while s is not empty:
 v = s.pop()
 l.append(v)
 for each outgoing edge e from v:
 w = e.destination
 delete e
 if w is a source:
 s.push(w)
 return l

Looping through every vertex to find sources is \(O(\mid V\mid)\)

Stack will hold each vertex once

At each iteration we only visit outgoing edges from popped vertex. So every edge visited once.

Total runtime: \(O(\mid V\mid + \mid E\mid)\)
Topological Sort Variations

- What if we're not allowed to modify original DAG?
 - How do we delete edges?
 - Use decorations!
- Start by decorating each vertex with it's in-degree
 - Instead of deleting edge
 - decrement in-degree of destination vertex by 1
 - then push vertex on stack when in-degree is 0!
Topological Sort Variations

- Do we need to use a stack?
 - No! Any data structure like a list or queue would work
 - All we're doing is keeping track of sources
- Different structures might yield different topological orderings
 - Why do they all work?
 - Vertices are only added to structure when they become a source
 - i.e., when all of it’s "prerequisites" have been visited
 - This invariant is maintained throughout algorithm…
 - …and guarantees a valid topological ordering!
Top Sort: Why only on DAGs?

- If the graph has a cycle…
- …we don't have a valid topological ordering
- We can use top sort to check if a DAG has a cycle
- Run top sort on graph
 - if there are edges left at the end but no more sources
 - then there must be a cycle