Directed Acyclic Graphs & Topological Sort

CS16: Introduction to Data Structures & Algorithms
Seny Kamara - Spring 2017
Outline

- Directed Acyclic Graphs
- Topological Sort
 - Hand-simulation
 - Pseudo-code
 - Runtime analysis
Directed Acyclic Graphs

- A DAG is **directed** & **acyclic**

- Directed
 - edges have origin & destination…
 - …represented by a directed arrow

- Acyclic
 - No cycles!
 - Starting from any vertex, there is no path that leads back to the same vertex
Directed Acyclic Graphs

- DAGs often used to model situations in which completing certain things depend on completing other things
 - ex: course prerequisites or small tasks in a big project

- Terminology
 - Sources: vertices with no incoming edges (no dependencies)
 - Sinks: vertices with no outgoing edges
 - In-degree of a vertex: number of incoming edges of the vertex
 - Out-degree of a vertex: number of outgoing edges of the vertex
Directed Acyclic Graphs — Example
Topological Sort

- Imagine you are a CS concentrator
- You need to plan your courses for next 3 years
- How can you do that taking into account pre-requisites?
 - Represent courses w/ a DAG
 - Use topological sort!
 - Produces topological ordering of a DAG
Topological Sort

- Topological Ordering
 - ordering of vertices in DAG…
 - …such that for each vertex v…
 - …all of v's prereqs come before it in the ordering

- Topological Sort
 - Algorithm that produces topological ordering given a DAG

- Valid topological orderings
 - 15, 16, 22, 141
 - 22, 15, 16, 141
 - 15, 22, 16, 141
Topological Sort—General Strategy

- If vertex has no prerequisites (i.e., is a source), we can visit it!
- Once we visit a vertex,
 - all of its outgoing edges can be deleted
 - because that prerequisite has been satisfied
- Deleting edges might create new sources
 - which we can now visit
- Data Structures needed
 - DAG to top-sort
 - A structure to keep track of sources
 - A list to keep track of the resultant topological ordering
Topological Sort—Simulation

List:

Stack
Topological Sort—Simulation

Populate Stack with source vertices

List:
Topological Sort—Simulation

Pop from stack and add to list

List: 15

Stack
Topological Sort—Simulation

Remove outgoing edges & check corresponding vertices

List: 15

Stack: 22
Topological Sort—Simulation

16 has no more incoming edges so push it on the stack
Topological Sort—Simulation

Pop from the stack and add to list

List: 15 16

Stack
Topological Sort—Simulation

Remove outgoing edges & check the corresponding vertices

List: 15, 16
Topological Sort—Simulation

33 has no more incoming edges so push it onto the stack
141 still has an incoming edge

List: 15 16
Topological Sort—Simulation

Pop from the stack & repeat!

List: 15 16 33

Stack: 22

Nodes:
- 22
- 141
- 123
- 224
- 33
- 15
- 16

Connections:
- 22 → 141
- 141 → 123
- 123 → 224
- 224 → 33
- 33 → 141
Topological Sort—Simulation

List: 15 16 33

Stack: 22 224 123 141 22

22
Topological Sort—Simulation

List: 15 16 33

Stack: 22 123 224
Topological Sort—Simulation

List: 15 16 33 123
Topological Sort—Simulation

List: 15 16 33 123

Stack: 224 22
Topological Sort—Simulation

List: 15 16 33 123 224

Stack: 22
Topological Sort—Simulation

List: 15 16 33 123 224 22

Stack
Topological Sort—Simulation

List: 15 16 33 123 224 22

Stack: 141
Topological Sort—Simulation

We're done!
Topological Sort—Stack
Topological Sort—Stack

Activity #1

2 min
Topological Sort—Stack

Activity #1

1 min
Topological Sort—Stack
function top_sort(graph g):
 // Input: A DAG g
 // Output: A list of vertices of g, in topological order
 s = Stack()
 l = List()
 for each vertex in g:
 if vertex is source:
 s.push(vertex)
 while s is not empty:
 v = s.pop()
 l.append(v)
 for each outgoing edge e from v:
 w = e.destination
 delete e
 if w is a source:
 s.push(w)
 return l
Topological Sort Runtime

function top_sort(graph g):
 // Input: A DAG g
 // Output: A list of vertices of g, in topological order
 s = Stack()
 l = List()
 for each vertex in g:
 if vertex is source:
 s.push(vertex)
 while s is not empty:
 v = s.pop()
 l.append(v)
 for each outgoing edge e from v:
 w = e.destination
 delete e
 if w is a source:
 s.push(w)
 return l

Looping through every vertex to find sources is $O(|V|)$
Topological Sort Runtime

function `top_sort(graph g)`:

// Input: A DAG g
// Output: A list of vertices of g, in topological order

s = Stack()
l = List()

for each vertex in g:
 if vertex is source:
 s.push(vertex)

while s is not empty:
 v = s.pop()
 l.append(v)

 for each outgoing edge e from v:
 w = e.destination
 delete e
 if w is a source:
 s.push(w)

return l

Looping through every vertex to find sources is $O(|V|)$
Stack will hold each vertex once
At each iteration we only visit outgoing edges from popped vertex. So every edge visited once.

Total runtime: $O(|V| + |E|)$
Topological Sort—Queue

Activity #2

2 min
Topological Sort—Queue

Activity #2

2 min
Topological Sort—Queue
Topological Sort—Queue

Activity #2
Topological Sort Variations

- What if we're not allowed to modify original DAG?
 - How do we delete edges?
 - Use decorations!
- Start by decorating each vertex with it's in-degree
 - Instead of deleting edge
 - decrement in-degree of destination vertex by 1
 - then push vertex on stack when in-degree is 0!
Topological Sort Variations

- Do we need to use a stack?
 - No! Any data structure like a list or queue would work
 - All we're doing is keeping track of sources
- Different structures might yield different topological orderings
 - Why do they all work?
 - Vertices are only added to structure when they become a source
 - i.e., when all of it’s "prerequisites" have been visited
 - This invariant is maintained throughout algorithm…
 - …and guarantees a valid topological ordering!
Topological Sort

Activity #3

2 min
Topological Sort

Activity #3

2 min
Topological Sort
Topological Sort

Activity #3
Top Sort: Why only on DAGs?

- If the graph has a cycle...
- ...we don't have a valid topological ordering
- We can use top sort to check if a directed graph has cycle
- Run top sort on graph
 - if there are edges left at the end but no more sources
 - then there must be a cycle