
Minimum Spanning
Trees:
Kruskal

CS16: Introduction to Data Structures & Algorithms
Summer 2021

Review: Prim-Jarnik

2

function prim(G):
 // Input: weighted, undirected graph G with vertices V
 // Output: list of edges in MST
 for all v in V:
 v.cost = ∞
 v.prev = null
 s = a random v in V // pick a random source s
 s.cost = 0
 MST = []
 PQ = PriorityQueue(V) // priorities will be v.cost values
 while PQ is not empty:
 v = PQ.removeMin()
 if v.prev != null:
 MST.append((v, v.prev))
 for all incident edges (v,u) of v such that u is in PQ:
 if u.cost > (v,u).weight:
 u.cost = (v,u).weight
 u.prev = v
 PQ.decreaseKey(u, u.cost)
 return MST

Proof of Correctness
‣ Common way of proving correctness of greedy algos
‣ show that algorithm is always correct at every step

‣ Best way to do this is by induction
‣ tricky part is coming up with the right invariant

3

Inductive invariant for Prim
‣ Want an invariant P(n), where n is number of

edges added so far
‣ Need to have:
‣ P(0) [base case]

‣ P(n) implies P(n + 1) [inductive case]

‣ P(size of MST) implies correctness

4

Inductive invariant for Prim
‣ Want an invariant P(n), where n is number of

edges added so far
‣ Need to have:
‣ P(0) [base case]

‣ P(n) implies P(n + 1) [inductive case]

‣ P(size of MST) implies correctness

‣ P(n)= first n edges added by Prim are a
subtree of some MST

5

Graph Cuts
‣ A cut is any partition of the vertices into two groups

‣ Here G is partitioned in 2
‣ with edges b and a joining the partitions

6

a

b

Proof of Correctness
‣ P(n)

‣ first n edges added by Prim are a subtree of some MST

‣ Base case when n=0
‣ no edges have been added yet so P(0) is trivially true

‣ Inductive Hypothesis
‣ first k edges added by Prim form a tree T which is subtree of some MST M

7

T
M

IH

Proof of Correctness
‣ Inductive Step

‣ Let e be the (k+1)th edge that is added
‣ e will connect T (green nodes) to an unvisited node (one of blue nodes)
‣ We need to show that adding e to T

‣ forms a subtree of some MST M’

‣ (which may or may not be the same MST as M)

8

T

Proof of Correctness
‣ Two cases

‣ e is in original MST M

‣ e is not in M

‣ Case 1: e is in M
‣ there exists an MST that contains first k+1 edges

‣ So P(k+1) is true!

9

MT

e

IH

Proof of Correctness
‣ Case 2: e is not in M

‣ if we add e=(u,v) to M then we get a cycle

‣ why? since M is span. tree there must be path from u to v w/o e

‣ so there must be another edge e’ that connects T to unvisited nodes

‣ We know e.weight ≤ e’.weight because Prim chose e first
10

T e

e’

Me

e’

IH

Proof of Correctness
‣ So if we add e to M and remove e’

‣ we get a new MST M’ that is no larger than M and contains T & e

‣ P(k+1) is true

‣ because M’ is an MST that contains the first k+1 edges added
by Prim’s

11

T e

e’

M’

Proof of Correctness
‣ Since we have shown
‣ P(0) is true

‣ P(k+1) is true assuming P(k) is true (for both
cases)

‣ The first n edges added by Prim form a subtree of
some MST

12

Kruskal’s Algorithm
‣ Sort edges by weight in ascending order
‣ For each edge in sorted list
‣ If adding edge does not create cycle…
‣ …add it to MST

‣ Stop when you have gone through all edges

13

Example

14

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(C,E),(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

Kruskal
‣ How can we tell if adding edge will create cycle?
‣ Start by giving each vertex its own “cloud”
‣ If both ends of lowest-cost edge are in same

cloud
‣ we know that adding the edge will create a cycle!

‣ When edge is added to MST
‣ merge clouds of the endpoints

15

Example

16

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(C,E),(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

Example

17

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

Example

18

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

Example

19

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

Example

20

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(B,D),(A,B),(A,D),(B,E),(B,F)]

Example

21

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(A,B),(A,D),(B,E),(B,F)]

BD cannot be added
because it would lead

to a cycle

Example

22

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(A,D),(B,E),(B,F)]

Example

23

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(B,E),(B,F)]

AD cannot be added
because it would lead

to a cycle

Example

24

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(B,F)]

BE cannot be added
because it would lead

to a cycle

Example

25

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = []

BF cannot be added
because it would lead

to a cycle

Kruskal Pseudo-Code

26

function kruskal(G):
 // Input: undirected, weighted graph G
 // Output: list of edges in MST
 for vertices v in G:
 makeCloud(v) // put every vertex into it own set
 MST = []
 Sort all edges
 for all edges (u,v) in G sorted by weight:
 if u and v are not in same cloud:
 add (u,v) to MST
 merge clouds containing u and v
 return MST

Merging Clouds (Naive way)
‣ Assign each vertex a different number
‣ that represents its initial cloud

‣ To merge clouds of u and v
‣ Find all vertices in each cloud
‣ Figure out which of the clouds is smaller
‣ Redecorate all vertices in smaller cloud w/ bigger

cloud’s number

27

Merging Clouds (Naive way)
‣ Finding all vertices in u & v’s clouds is O(|V|)

‣ because we have to iterate through each vertex…

‣ …and check if its cloud number matches u or v’s cloud number

‣ Figuring out smaller cloud is O(1)
‣ as long as we keep track of cloud size as we find vertices in them

‣ Changing cloud numbers of nodes in smaller cloud is O(|V|)
‣ because smallest cloud could be as big as |V|/2 vertices

‣ Total runtime to merge clouds
‣ O(|V| + 1 + |V|) = O(|V|)

28

Kruskal Runtime w/ Naive Clouds

29

function kruskal(G):
 // Input: undirected, weighted graph G
 // Output: list of edges in MST
 for vertices v in G:
 makeCloud(v)
 MST = []
 Sort all edges
 for all edges (u,v) in G sorted by weight:
 if u and v are not in same cloud:
 add (u,v) to MST
 merge clouds containing u and v
 return MST

O(|E|log|E|)
O(|E|)

O(|V|)

O(|V|)

Kruskal Runtime
‣ O(|V|) for iterating through vertices
‣ O(|E|log|E|) for sorting edges
‣ O(|E|×|V|) for iterating through edges and

merging clouds naively
‣ O(|V|+|E|log|E|+|E|×|V|)

‣ = O(|E|×|V|)

‣ Can we do better?

30

Union-Find
‣ Let's rethink notion of clouds
‣ instead of labeling vertices w/ cloud numbers
‣ think of clouds as small trees

‣ Every vertex in these trees has
‣ a parent pointer that leads up to root of the tree
‣ a rank that measures how deep the tree is

31

Example

32

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(C,E),(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

Example

33

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

Example

34

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

Example

35

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

Example

36

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(B,D),(A,B),(A,D),(B,E),(B,F)]

Example

37

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(A,D),(B,E),(B,F)]

Example

38

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

edges = [(A,D),(B,E),(B,F)]

Implementing Union-Find
‣ At start of Kruskal
‣ every node is put into own cloud

39

// Decorates every vertex with its parent ptr & rank
function makeCloud(x):

x.parent = x
x.rank = 0

A B
0 0

Implementing Union-Find
‣ Suppose A is in cloud 1 and B is in cloud 2

‣ Instead of relabeling B as cloud 1 make B point to A

‣ Think of this as the union of two clouds

‣ Given two clouds which one should point to the other?

40

A B
Cloud 1 Cloud 2

Implementing Union-Find
‣ We use the rank to decide
‣ make lower-ranked root point to higher-ranked root
‣ then update rank

‣ How do we update ranks?

‣ For clouds of size 1 root always has rank 0

‣ For clouds of size larger than 1 we increment rank
only when merging clouds of same rank

41

Implementing Union-Find
‣ Merging trees with same rank

42

A

B C D

E

F G H

1

0 0 0 0 0 0

1

Implementing Union-Find
‣ Merging trees with same rank

43

A

B C D E

F G H

2

0 0 0

0 0 0

1

Implementing Union-Find
‣ Merging trees with different ranks

44

A

B C D

1

0 0 0

E
0

Implementing Union-Find
‣ Merging trees with different ranks

45

A

B C D

1

0 0 0

E
0

A

B C D

1

0 0 0

E
2

Implementing Union-Find

46

// Merges two clouds, given the root of each cloud
function union(root1, root2):

if root1.rank > root2.rank:
root2.parent = root1

elif root1.rank < root2.rank:
root1.parent = root2

else:
root2.parent = root1
root1.rank++

Implementing Union-Find
‣ To find the cloud of B
‣ follow B’s parent pointer all the way up to root

47

// Finds the cloud of a given vertex
function find_root(x):

while x.parent != x:
x = x.parent

return x

A B
1 0

Path Compression
‣ This approach to implementing find runs in

‣ O(log|V|)

‣ not obvious to see why and proof beyond CS16

‣ We can bring this down to amortized O(1)*
‣ with path compression…
‣ …a way of flattening the structure of the tree…

‣ …whenever find() is used on it
‣ *not actually O(1) but very close—analysis goes beyond

CS16 material
48

Path Compression
‣ Instead of traversing up tree every time D's cloud is asked for

‣ We only search for D's root once

‣ As we follow chain of parents to A we set parents of D & C to A

49

A

B

C

D

A

B C D

Amortized O(1)O(log|V|)

Path Compression Pseudo-code

50

function find_root(x):
if x.parent != x:

x.parent = find_root(x.parent)
return x.parent

Runtime of Kruskal w/ Path Compression

51

function kruskal(G):
 // Input: undirected, weighted graph G
 // Output: list of edges in MST
 for vertices v in G:
 makeCloud(v)
 MST = []
 Sort all edges
 for all edges (u,v) in G sorted by weight:
 if u and v are not in same cloud:
 add (u,v) to MST
 merge clouds containing u and v
 return MST

O(|E|log|E|)
O(|E|)

O(1)
amortized

O(|V|)

O(1)
amortized

Kruskal Runtime
‣ O(|V|) for iterating through vertices
‣ O(|E|log|E|) for sorting edges
‣ O(|E|×1) for iterating through edges and

merging clouds with path compression
‣ O(|V|+|E|log|E|+|E|×1)

‣ = O(|V|+|E|log|E|)

‣ O(|V|+|E|log|E|) better than O(|V|×|E|)

52

Readings
‣ Dasgupta Section 5.1
‣ Explanations of MSTs
‣ and both algorithms discussed in this lecture

53

