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Review: Prim-Jarnik
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function prim(G):
   // Input: weighted, undirected graph G with vertices V
   // Output: list of edges in MST
   for all v in V:
      v.cost = ∞
      v.prev = null
   s = a random v in V // pick a random source s
   s.cost = 0
   MST = []
   PQ = PriorityQueue(V) // priorities will be v.cost values
   while PQ is not empty:
      v = PQ.removeMin()
      if v.prev != null:
         MST.append((v, v.prev))
      for all incident edges (v,u) of v such that u is in PQ:
         if u.cost > (v,u).weight:
            u.cost = (v,u).weight
            u.prev = v
            PQ.decreaseKey(u, u.cost)
  return MST



Proof of Correctness
‣ Common way of proving correctness of greedy algos 
‣ show that algorithm is always correct at every step

‣ Best way to do this is by induction
‣ tricky part is coming up with the right invariant
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Inductive invariant for Prim
‣ Want an invariant P(n), where n is number of 

edges added so far
‣ Need to have:
‣ P(0) [base case]

‣ P(n) implies P(n + 1) [inductive case]

‣ P(size of MST) implies correctness
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Inductive invariant for Prim
‣ Want an invariant P(n), where n is number of 

edges added so far
‣ Need to have:
‣ P(0) [base case]

‣ P(n) implies P(n + 1) [inductive case]

‣ P(size of MST) implies correctness

‣ P(n)= first n edges added by Prim are a 
subtree of some MST
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Graph Cuts
‣ A cut is any partition of the vertices into two groups

‣ Here G is partitioned in 2
‣ with edges b and a joining the partitions

6

a

b



Proof of Correctness
‣ P(n)

‣ first n edges added by Prim are a subtree of some MST

‣ Base case when n=0 
‣ no edges have been added yet so P(0) is trivially true

‣ Inductive Hypothesis
‣ first k edges added by Prim form a tree T which is subtree of some MST M
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Proof of Correctness
‣ Inductive Step

‣ Let e be the (k+1)th edge that is added
‣ e will connect T (green nodes) to an unvisited node (one of blue nodes)
‣ We need to show that adding e to T 

‣ forms a subtree of some MST M’ 

‣ (which may or may not be the same MST as M)
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Proof of Correctness
‣ Two cases

‣ e is in original MST M

‣ e is not in M

‣ Case 1: e is in M
‣ there exists an MST that contains first k+1 edges 

‣ So P(k+1) is true!

9

MT

e

IH



Proof of Correctness
‣ Case 2: e is not in M

‣ if we add e=(u,v) to M then we get a cycle

‣ why? since M is span. tree there must be path from u to v w/o e

‣ so there must be another edge e’ that connects T to unvisited nodes

‣ We know e.weight ≤ e’.weight because Prim chose e first
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Proof of Correctness
‣ So if we add e to M and remove e’

‣ we get a new MST M’ that is no larger than M and contains T & e

‣ P(k+1) is true

‣ because M’ is an MST that contains the first k+1 edges added 
by Prim’s
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Proof of Correctness
‣ Since we have shown 
‣ P(0) is true

‣ P(k+1) is true assuming P(k) is true (for both 
cases) 

‣ The first n edges added by Prim form a subtree of 
some MST

12



Kruskal’s Algorithm
‣ Sort edges by weight in ascending order
‣ For each edge in sorted list
‣ If adding edge does not create cycle…
‣ …add it to MST

‣ Stop when you have gone through all edges
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Example
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Kruskal
‣ How can we tell if adding edge will create cycle?
‣ Start by giving each vertex its own “cloud”
‣ If both ends of lowest-cost edge are in same 

cloud 
‣ we know that adding the edge will create a cycle!

‣ When edge is added to MST
‣ merge clouds of the endpoints
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Kruskal Pseudo-Code
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function kruskal(G):
   // Input: undirected, weighted graph G
   // Output: list of edges in MST
   for vertices v in G:
      makeCloud(v) // put every vertex into it own set
   MST = []
   Sort all edges
   for all edges (u,v) in G sorted by weight:
      if u and v are not in same cloud:
         add (u,v) to MST
         merge clouds containing u and v
   return MST



Merging Clouds (Naive way)
‣ Assign each vertex a different number 
‣ that represents its initial cloud

‣ To merge clouds of u and v
‣ Find all vertices in each cloud 
‣ Figure out which of the clouds is smaller
‣ Redecorate all vertices in smaller cloud w/ bigger 

cloud’s number
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Merging Clouds (Naive way)
‣ Finding all vertices in u & v’s clouds is O(|V|)

‣ because we have to iterate through each vertex…

‣ …and check if its cloud number matches u or v’s cloud number

‣ Figuring out smaller cloud is O(1) 
‣ as long as we keep track of cloud size as we find vertices in them

‣ Changing cloud numbers of nodes in smaller cloud is O(|V|)
‣ because smallest cloud could be as big as |V|/2 vertices

‣ Total runtime to merge clouds
‣ O(|V| + 1 + |V|) = O(|V|)
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Kruskal Runtime w/ Naive Clouds
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function kruskal(G):
   // Input: undirected, weighted graph G
   // Output: list of edges in MST
   for vertices v in G:
      makeCloud(v)
   MST = []
   Sort all edges
   for all edges (u,v) in G sorted by weight:
      if u and v are not in same cloud:
         add (u,v) to MST
         merge clouds containing u and v
   return MST

O(|E|log|E|)
O(|E|)

O(|V|)

O(|V|)



Kruskal Runtime
‣ O(|V|) for iterating through vertices
‣ O(|E|log|E|) for sorting edges
‣ O(|E|×|V|) for iterating through edges and 

merging clouds naively 
‣ O(|V|+|E|log|E|+|E|×|V|) 

‣ = O(|E|×|V|)

‣ Can we do better?
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Union-Find
‣ Let's rethink notion of clouds 
‣ instead of labeling vertices w/ cloud numbers
‣ think of clouds as small trees

‣ Every vertex in these trees has
‣ a parent pointer that leads up to root of the tree 
‣ a rank that measures how deep the tree is
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Example
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Implementing Union-Find
‣ At start of Kruskal 
‣ every node is put into own cloud
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// Decorates every vertex with its parent ptr & rank 
function makeCloud(x):

x.parent = x 
x.rank = 0

A B
0 0



Implementing Union-Find
‣ Suppose A is in cloud 1 and B is in cloud 2 

‣ Instead of relabeling B as cloud 1 make B point to A

‣ Think of this as the union of two clouds

‣ Given two clouds which one should point to the other?
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Implementing Union-Find
‣ We use the rank to decide
‣ make lower-ranked root point to higher-ranked root
‣ then update rank 

‣ How do we update ranks?

‣ For clouds of size 1 root always has rank 0

‣ For clouds of size larger than 1 we increment rank 
only when merging clouds of same rank
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Implementing Union-Find
‣ Merging trees with same rank
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Implementing Union-Find
‣ Merging trees with same rank
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Implementing Union-Find
‣ Merging trees with different ranks
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Implementing Union-Find
‣ Merging trees with different ranks
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Implementing Union-Find
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// Merges two clouds, given the root of each cloud
function union(root1, root2):

if root1.rank > root2.rank:
root2.parent = root1

elif root1.rank < root2.rank:
root1.parent = root2

else:
root2.parent = root1
root1.rank++



Implementing Union-Find
‣ To find the cloud of B 
‣ follow B’s parent pointer all the way up to root
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// Finds the cloud of a given vertex
function find_root(x):

while x.parent != x:
x = x.parent

return x

A B
1 0



Path Compression
‣ This approach to implementing find runs in 

‣ O(log|V|)

‣ not obvious to see why and proof beyond CS16

‣ We can bring this down to amortized O(1)*
‣ with path compression…
‣ …a way of flattening the structure of the tree…

‣ …whenever find() is used on it
‣ *not actually O(1) but very close—analysis goes beyond 

CS16 material
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Path Compression
‣ Instead of traversing up tree every time D's cloud is asked for 

‣ We only search for D's root once 

‣ As we follow chain of parents to A we set parents of D & C to A 
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Path Compression Pseudo-code
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function find_root(x):
if x.parent != x:

x.parent = find_root(x.parent)
return x.parent



Runtime of Kruskal w/ Path Compression
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function kruskal(G):
   // Input: undirected, weighted graph G
   // Output: list of edges in MST
   for vertices v in G:
      makeCloud(v)
   MST = []
   Sort all edges
   for all edges (u,v) in G sorted by weight:
      if u and v are not in same cloud:
         add (u,v) to MST
         merge clouds containing u and v
   return MST

O(|E|log|E|)
O(|E|)

O(1)
amortized

O(|V|)

O(1)
amortized



Kruskal Runtime
‣ O(|V|) for iterating through vertices
‣ O(|E|log|E|) for sorting edges
‣ O(|E|×1) for iterating through edges and 

merging clouds with path compression 
‣ O(|V|+|E|log|E|+|E|×1) 

‣ = O(|V|+|E|log|E|)

‣ O(|V|+|E|log|E|) better than O(|V|×|E|)
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Readings
‣ Dasgupta Section 5.1
‣ Explanations of MSTs 
‣ and both algorithms discussed in this lecture
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