Minimum Spanning Trees: Kruskal

CS16: Introduction to Data Structures & Algorithms
Summer 2021
function `prim(G)`:

// Input: weighted, undirected graph G with vertices V
// Output: list of edges in MST

for all v in V:
 v.cost = \infty
 v.prev = null

s = a random v in V // pick a random source s
s.cost = 0
MST = []
PQ = PriorityQueue(V) // priorities will be v.cost values
while PQ is not empty:
 v = PQ.removeMin()
 if v.prev != null:
 MST.append((v, v.prev))
 for all incident edges (v,u) of v such that u is in PQ:
 if u.cost > (v,u).weight:
 u.cost = (v,u).weight
 u.prev = v
 PQ.decreaseKey(u, u.cost)

return MST
Proof of Correctness

- Common way of proving correctness of greedy algos
 - show that algorithm is always correct at every step
- Best way to do this is by induction
 - tricky part is coming up with the right invariant
Inductive invariant for Prim

- Want an invariant $P(n)$, where n is number of edges added so far
- Need to have:
 - $P(0)$ [base case]
 - $P(n)$ implies $P(n + 1)$ [inductive case]
 - $P($size of MST$)$ implies correctness
Inductive invariant for Prim

- Want an invariant \(P(n) \), where \(n \) is number of edges added so far
- Need to have:
 - \(P(0) \) [base case]
 - \(P(n) \) implies \(P(n + 1) \) [inductive case]
 - \(P(\text{size of MST}) \) implies correctness
- \(P(n) = \) first \(n \) edges added by Prim are a subtree of some MST
Graph Cuts

- A cut is any partition of the vertices into two groups

- Here G is partitioned in 2
 - with edges b and a joining the partitions
Proof of Correctness

¬ P(n)
 ¬ first n edges added by Prim are a subtree of some MST

¬ Base case when n=0
 ¬ no edges have been added yet so P(0) is trivially true

¬ Inductive Hypothesis
 ¬ first k edges added by Prim form a tree T which is subtree of some MST M
Proof of Correctness

- Inductive Step
 - Let e be the $(k+1)$th edge that is added
 - e will connect T (green nodes) to an unvisited node (one of blue nodes)
 - We need to show that adding e to T
 - forms a subtree of some MST M'
 - (which may or may not be the same MST as M)
Proof of Correctness

- Two cases
 - \(e \) is in original MST \(M \)
 - \(e \) is not in \(M \)

- Case 1: \(e \) is in \(M \)
 - there exists an MST that contains first \(k+1 \) edges
 - So \(P(k+1) \) is true!
Proof of Correctness

- Case 2: e is not in M
 - if we add $e=(u,v)$ to M then we get a cycle
 - why? since M is span. tree there must be path from u to v w/o e
 - so there must be another edge e' that connects T to unvisited nodes

- We know $e.weight \leq e'.weight$ because Prim chose e first
Proof of Correctness

- So if we add e to M and remove e'
 - we get a new MST M' that is no larger than M and contains T & e

- $P(k+1)$ is true
 - because M' is an MST that contains the first $k+1$ edges added by Prim’s
Proof of Correctness

- Since we have shown
 - $P(0)$ is true
 - $P(k+1)$ is true assuming $P(k)$ is true (for both cases)
- The first n edges added by Prim form a subtree of some MST
Kruskal’s Algorithm

- Sort edges by weight in ascending order
- For each edge in sorted list
 - If adding edge does not create cycle…
 - …add it to MST
- Stop when you have gone through all edges
Example

\[
\text{edges} = [(C,E),(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]
\]
Kruskal

- How can we tell if adding edge will create cycle?
- Start by giving each vertex its own “cloud”
- If both ends of lowest-cost edge are in same cloud
 - we know that adding the edge will create a cycle!
- When edge is added to MST
 - merge clouds of the endpoints
Example

edges = [(C, E), (D, F), (B, C), (E, F), (B, D), (A, B), (A, D), (B, E), (B, F)]
Example

edges = [(D,F), (B,C), (E,F), (B,D), (A,B), (A,D), (B,E), (B,F)]
Example

edges = [(B,C), (E,F), (B,D), (A,B), (A,D), (B,E), (B,F)]
Example

\[
\text{edges} = [(E,F), (B,D), (A,B), (A,D), (B,E), (B,F)]
\]
Example

edges = [(B,D), (A,B), (A,D), (B,E), (B,F)]
Example

edges = [(A,B), (A,D), (B,E), (B,F)]

BD cannot be added because it would lead to a cycle
Example

edges = [(A, D), (B, E), (B, F)]
Example

AD cannot be added because it would lead to a cycle

edges = [(B,E),(B,F)]
Example

BE cannot be added because it would lead to a cycle

\[\text{edges} = [(B,F)]\]
Example

edges = []
function **kruskal**(*G*):

// Input: undirected, weighted graph *G*
// Output: list of edges in MST

for vertices *v* in *G*:
 makeCloud(*v*) // put every vertex into its own set

MST = []

Sort all edges

for all edges (*u*,*v*) in *G* sorted by weight:
 if *u* and *v* are not in the same cloud:
 add (*u*,*v*) to MST
 merge clouds containing *u* and *v*

return MST
Merging Clouds (Naive way)

- Assign each vertex a different number that represents its initial cloud
- To merge clouds of \(u \) and \(v \)
 - Find all vertices in each cloud
 - Figure out which of the clouds is smaller
 - Redecorate all vertices in smaller cloud with bigger cloud’s number
Merging Clouds (Naive way)

- Finding all vertices in u & v's clouds is \(O(|V|) \)
 - because we have to iterate through each vertex...
 - …and check if its cloud number matches u or v’s cloud number

- Figuring out smaller cloud is \(O(1) \)
 - as long as we keep track of cloud size as we find vertices in them

- Changing cloud numbers of nodes in smaller cloud is \(O(|V|) \)
 - because smallest cloud could be as big as \(|V|/2 \) vertices

- Total runtime to merge clouds
 - \(O(|V| + 1 + |V|) = O(|V|) \)
Kruskal Runtime w/ Naive Clouds

function **kruskal**\((G) \):

// Input: undirected, weighted graph G
// Output: list of edges in MST
for vertices \(v \) in \(G \):
 makeCloud\((v) \)
MST = []
Sort all edges
for all edges \((u,v)\) in \(G \) sorted by weight:
 if \(u \) and \(v \) are not in same cloud:
 add \((u,v)\) to MST
 merge clouds containing \(u \) and \(v \)
return MST

\(O(|V|) \)
\(O(|E| \log |E|) \)
\(O(|E|) \)
\(O(|V|) \)
Kruskal Runtime

- \(O(|V|) \) for iterating through vertices
- \(O(|E| \log |E|) \) for sorting edges
- \(O(|E| \times |V|) \) for iterating through edges and merging clouds naively
- \(O(|V| + |E| \log |E| + |E| \times |V|) \)
 - \(= O(|E| \times |V|) \)
- Can we do better?
Let's rethink notion of clouds

- instead of labeling vertices w/ cloud numbers
- think of clouds as small trees

Every vertex in these trees has

- a parent pointer that leads up to root of the tree
- a rank that measures how deep the tree is
edges = [(C, E), (D, F), (B, C), (E, F), (B, D), (A, B), (A, D), (B, E), (B, F)]
Example

edges = [(D, F), (B, C), (E, F), (B, D), (A, B), (A, D), (B, E), (B, F)]
Example

edges = [(B,C), (E,F), (B,D), (A,B), (A,D), (B,E), (B,F)]
Example

edges = [(E,F), (B,D), (A,B), (A,D), (B,E), (B,F)]
Example

edges = [(B,D), (A,B), (A,D), (B,E), (B,F)]
Example

edges = [(A, D), (B, E), (B, F)]
edges = [(A,D), (B,E), (B,F)]
Implementing Union-Find

- At start of Kruskal
 - every node is put into own cloud

```javascript
// Decorates every vertex with its parent ptr & rank
function makeCloud(x):
    x.parent = x
    x.rank = 0
```

![Diagram of nodes A and B with ranks 0]
Implementing Union-Find

- Suppose \(A \) is in cloud 1 and \(B \) is in cloud 2
- Instead of relabeling \(B \) as cloud 1 make \(B \) point to \(A \)
 - Think of this as the union of two clouds

- Given two clouds which one should point to the other?
Implementing Union-Find

- We use the rank to decide
 - make lower-ranked root point to higher-ranked root
 - then update rank
- How do we update ranks?
 - For clouds of size 1 root always has rank 0
 - For clouds of size larger than 1 we increment rank only when merging clouds of same rank
Implementing Union-Find

- Merging trees with same rank
Implementing Union-Find

- Merging trees with same rank
Implementing Union-Find

- Merging trees with different ranks

```
A

B

C

D

E

1

0

0

0
```

44
Implementing Union-Find

- Merging trees with different ranks

![Diagram of Union-Find with trees A, B, C, D, and E showing merging process with different ranks.]
// Merges two clouds, given the root of each cloud
function union(root1, root2):
 if root1.rank > root2.rank:
 root2.parent = root1
 elif root1.rank < root2.rank:
 root1.parent = root2
 else:
 root2.parent = root1
 root1.rank++
Implementing Union-Find

- To find the cloud of B
 - follow B’s parent pointer all the way up to root

```python
// Finds the cloud of a given vertex
function find_root(x):
    while x.parent != x:
        x = x.parent
    return x
```
Path Compression

- This approach to implementing `find` runs in \(O(\log |V|)\)
- not obvious to see why and proof beyond CS16
- We can bring this down to amortized \(O(1)\)*
 - with path compression…
 - …a way of flattening the structure of the tree…
 - …whenever `find()` is used on it
- *not actually \(O(1)\) but very close—analysis goes beyond CS16 material
Path Compression

- Instead of traversing up tree every time D's cloud is asked for
 - We only search for D's root once
 - As we follow chain of parents to A we set parents of D & C to A

\[
O(\log |V|)
\]

Amortized \(O(1)\)
Path Compression Pseudo-code

function find_root(x):
 if x.parent != x:
 x.parent = find_root(x.parent)
 return x.parent
function \textit{kruskal}(G):

// Input: undirected, weighted graph G
// Output: list of edges in MST

for vertices \(v \) in \(G \):
 makeCloud(\(v \))

\(MST = [] \)

Sort all edges

for all edges \((u,v) \) in \(G \) sorted by weight:
 if \(u \) and \(v \) are not in same cloud:
 add \((u,v) \) to \(MST \)
 merge clouds containing \(u \) and \(v \)

return \(MST \)
Kruskal Runtime

- \(O(|V|) \) for iterating through vertices
- \(O(|E| \log |E|) \) for sorting edges
- \(O(|E| \times 1) \) for iterating through edges and merging clouds with path compression
- \(O(|V| + |E| \log |E| + |E| \times 1) \)
 \[= O(|V| + |E| \log |E|)\]
- \(O(|V| + |E| \log |E|) \) better than \(O(|V| \times |E|) \)
Readings

- Dasgupta Section 5.1
 - Explanations of MSTs
 - and both algorithms discussed in this lecture