Graphs

CS16: Introduction to Data Structures & Algorithms
Spring 2019
Outline

‣ What is a Graph
‣ Terminology
‣ Properties
‣ Graph Types
‣ Representations
‣ Performance
‣ BFS/DFS
‣ Applications
What is a Graph

- A graph is defined by
 - a set of vertices \(V \)
 - a set of edges \(E \)
- Vertices and edges can both store data
- Example
 - vertices represent artists & can store content
 - edges represent collaborations (vocals or production)
A Graph

O(1)

Wu-Tang
Terminology

- Endpoints or end vertices of an edge
 - U and V are endpoints of edge a
- Incident edges of a vertex
 - a, b, d are incident to V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree of 5
- Parallel (multiple) edges
 - h, i are parallel edges
- Self-loops
 - j is a self-looped edge
Terminology

- A path is a sequence of alternating vertices and edges
 - begins and ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are visited at most once
- Examples
 - $P_1 = V \rightarrow_b X \rightarrow_h Z$ is a simple path
 - $P_2 = U \rightarrow_c W \rightarrow_e X \rightarrow_g Y \rightarrow_f W \rightarrow_d V$ is not a simple path, but is still a path
Applications

- Flight networks
- Road networks & GPS
- The Web
 - pages are vertices
 - links are edges
- The Internet
 - routers and devices are vertices
 - network connections are edges
- Facebook
 - profiles are vertices
 - friendships are edges
Graph Properties

- A graph $G' = (V', E')$ is a **subgraph** of $G = (V, E)$ if $V' \subseteq V$ and $E' \subseteq E$.

- A graph is **connected** if there exists a path from each vertex to every other vertex.

- A path is a **cycle** if it starts and ends at the same vertex.

- A graph is **acyclic** if it has no cycles.
A Subgraph
A Connected Graph
An Unconnected Graph

2 Connected Components
An Unconnected Graph

4 Connected Components
Cycles

[Diagram with interconnected images and labels]

O(1)

WU-TANG

[Image of Wu-Tang Clan]

O(1)

[Image of different artists and celebrities]
An Acyclic Graph
Graph Properties

- A **spanning tree** of G is a subgraph with
 - all of G’s vertices in a single tree
 - and enough edges to connect each vertex w/o cycles
Spanning Tree

No cycles!
Graph Properties

- A **spanning forest** is
 - a subgraph that consists of a spanning tree in each connected component of graph

- Spanning forests never contain cycles
 - this might not be the “best” or shortest path to each node
Graph Properties

- G is a tree if and only if it satisfies any of these conditions
 - G has $|V| - 1$ edges and no cycles
 - G has $|V| - 1$ edges and is connected
 - G is connected, but removing any edge disconnects it
 - G is acyclic, but adding any edges creates a cycle
 - Exactly one simple path connects each pair of vertices in G
Graph Proof 1

Prove that

the sum of the degrees of all vertices of some graph \(G \) is twice the number of edges of \(G \)

Let \(V = \{v_1, v_2, \ldots, v_p\} \), where \(p \) is number of vertices

The total sum of degrees \(D \) is such that

\[D = \deg(v_1) + \deg(v_2) + \ldots + \deg(v_p) \]

But each edge is counted twice in \(D \)

\(\text{one for each of the two vertices incident to the edge} \)

So \(D = 2|E| \), where \(|E| \) is the number of edges.
Graph Proof 2

- Prove using induction that if G is connected then
 - $|E| \geq |V| - 1$, for all $|V| \geq 1$

- Base case $|V| = 1$
 - If graph has one vertex then it will have 0 edges
 - so since $|E| = 0$ and $|V| - 1 = 1 - 1 = 0$, we have $|E| \geq |V| - 1$

- Inductive hypothesis
 - If graph has $|V| = k$ vertices then $|E| \geq k - 1$

- Inductive step
 - Let G be any connected graph with $|V| = k + 1$ vertices
 - We must show that $|E| \geq k$
Graph Proof 2

- Inductive step
 - Let G be any connected graph with $|V| = k + 1$ vertices
 - We must show that $|E| \geq k$
- Let u be the vertex of minimum degree in G
 - $\deg(u) \geq 1$ since G is connected
- If $\deg(u) = 1$
 - Let G’ be G without u and its 1 incident edge
 - G’ has k vertices because we removed 1 vertex from G
 - G’ is still connected because we only removed a leaf
 - So by inductive hypothesis, G’ has at least $k-1$ edges
 - which means that G has at least k edges
Graph Proof 2

- If $\deg(u) \geq 2$
 - Every vertex has at least two incident edges
 - So the total degree D of the graph is $D \geq 2(k+1)$
 - But we know from the last proof that $D=2|E|$
 - so $2|E| \geq 2(k+1) \implies |E| \geq k+1 \implies |E| \geq k$
- We showed it is true for $|V|=1$ (base case)...
 - ...and for $|V|=k+1$ assuming it is true for $|V|=k$...
 - ...so it is true for all $|V| \geq 1$
Edge Types

- **Undirected edge**
 - unordered pair of vertices (LH,CS)
 - for example a collaboration

- **Directed edge**
 - ordered pair of vertices (LH,CS)
 - first vertex LH is the origin
 - second vertex CS is the destination
 - LH collaborated with CS on CS’s album
An Undirected Graph
Directed Acyclic Graph (DAG)

Directed means ‘is a prerequisite for’

We’ll talk much more about DAGs in future lectures…

Acyclic = without cycles
Graph Representations

- Vertices usually stored in a List or Set
- 3 common ways of representing which vertices are adjacent
 - Edge list (or set)
 - Adjacency lists (or sets)
 - Adjacency matrix
Edge List

- Represents adjacencies as a list of pairs
- Each element of list is a single edge (a, b)
- Since the order of list doesn’t matter
 - can use hashset to improve runtime of adjacency testing
Edge Set

- Store all the edges in a HashSet

(1,1) (3,4) (2,5) (1,1) (1,5)
(4,6) (2,5) (4,5) (1,2)
(2,3)
Adjacency Lists

- Each vertex has an associated list with its neighbors
- Since the order of elements in lists doesn’t matter
 - lists can be hashsets instead
Adjacency Set

- Each vertex associated with a hashset of its neighbors.
Adjacency Matrix

- Matrix with \(n \) rows and \(n \) columns
 - \(n \) is number of vertices
 - If \(u \) is adjacent to \(v \) then \(M[u,v] = T \)
 - If \(u \) is not adjacent to \(v \) then \(M[u,v] = F \)
 - If graph is undirected then \(M[u,v] = M[v,u] \)
Adjacency Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Adjacency Matrix

- Initialize matrix to predicted size of graph
 - we can always expand later
- When vertex is added to graph
 - reserve a row and column of matrix for that vertex
- When vertex is removed
 - set its entire row and column to false
- Since we can’t remove rows/columns from arrays
 - keep separate collection of vertices that are actually present in graph
Graph ADT

- Vertices and edges store values
 - Ex: edge weights
- Accessor methods
 - `vertices()`
 - `edges()`
 - `incidentEdges(vertex)`
 - `areAdjacent(v₁, v₂)`
 - `endVertices(edge)`
 - `opposite(vertex, edge)`
- Update methods
 - `insertVertex(value)`
 - `insertEdge(v₁, v₂)`
 - sometimes this function also takes a value
 so `insertEdge(v₁, v₂, val)`
 - `removeVertex(vertex)`
 - `removeEdge(edge)`
Big-O Performance

Activity #1

3 min
Big-O Performance

Activity #1

3 min
Big-O Performance

Activity #1

2 min
Big-O Performance

Activity #1

1 min
Big-O Performance

Activity #1
Big-O Performance

<table>
<thead>
<tr>
<th></th>
<th>Edge Set</th>
<th>Adjacency Sets</th>
<th>Adjacency Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Space</td>
<td>$O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>vertices()</td>
<td>$O(1)^*$</td>
<td>$O(1)^*$</td>
<td>$O(1)^*$</td>
</tr>
<tr>
<td>edges()</td>
<td>$O(1)^*$</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>$O(</td>
<td>E</td>
<td>)$</td>
</tr>
<tr>
<td>areAdjacent (v₁, v₂)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>insertVertex(v)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(</td>
</tr>
<tr>
<td>insertEdge(v₁, v₂)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>$O(</td>
<td>E</td>
<td>)$</td>
</tr>
<tr>
<td>removeEdge(v₁, v₂)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

1 In all approaches, we maintain an additional list or set of vertices

* in place (return pointer)
Big-O Performance (Edge Set)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertices()</td>
<td>$O(1)$</td>
<td>Return set of vertices</td>
</tr>
<tr>
<td>edges()</td>
<td>$O(1)$</td>
<td>Return set of edges</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>areAdjacent(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Check if $(v₁,v₂)$ exists in the set</td>
</tr>
<tr>
<td>insertVertex(v)</td>
<td>$O(1)$</td>
<td>Add vertex v to the vertex list</td>
</tr>
<tr>
<td>insertEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Add element $(v₁,v₂)$ to the set</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>removeEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Remove edge $(v₁,v₂)$</td>
</tr>
</tbody>
</table>
Big-O Performance (Adjacency Set)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertices()</td>
<td>$O(1)$</td>
<td>Return the set of vertices</td>
</tr>
<tr>
<td>edges()</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>$O(1)$</td>
<td>Return v’s edge set</td>
</tr>
<tr>
<td>areAdjacent(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Check if v₂ is in v₁’s set</td>
</tr>
<tr>
<td>insertVertex(v)</td>
<td>$O(1)$</td>
<td>Add vertex v to the vertex set</td>
</tr>
<tr>
<td>insertEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Add v₁ to v₂’s edge set and vice versa</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>removeEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Remove v₁ from v₂’s set and vice versa</td>
</tr>
</tbody>
</table>
Big-O Performance (Adjacency Matrix)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertices()</td>
<td>(O(1))</td>
<td>Return the set of vertices</td>
</tr>
<tr>
<td>edges()</td>
<td>(O(</td>
<td>V</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>(O(</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: row/col are the same in an undirected graph.</td>
</tr>
<tr>
<td>areAdjacent((v_1,v_2))</td>
<td>(O(1))</td>
<td>Check index ((v_1,v_2)) for a true</td>
</tr>
<tr>
<td>insertVertex(v)</td>
<td>(O(</td>
<td>V</td>
</tr>
<tr>
<td>insertEdge((v_1,v_2))</td>
<td>(O(1))</td>
<td>Set index ((v_1,v_2)) to true</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>(O(</td>
<td>V</td>
</tr>
<tr>
<td>removeEdge((v_1,v_2))</td>
<td>(O(1))</td>
<td>Set index ((v_1,v_2)) to false</td>
</tr>
</tbody>
</table>
BFT and DFT

- Remember BFT and DFT on trees?
- We can also do them on graphs
 - a tree is just a special kind of graph
 - often used to find certain values in graphs
BFT/DFT on Graphs

Activity #2
BFT/DFT on Graphs

1 min

Activity #2
BFT/DFT on Graphs

Activity #2
Breadth First Traversal: Tree vs. Graph

function `treeBFT`(root):
 //Input: Root node of tree
 //Output: Nothing
 Q = new Queue()
 Q.enqueue(root)
 while Q is not empty:
 node = Q.dequeue()
 doSomething(node)
 enqueue node’s children

doSomething() could print, add to list, decorate node etc…

function `graphBFT`(start):
 //Input: start vertex
 //Output: Nothing
 Q = new Queue()
 start.visited = true
 Q.enqueue(start)
 while Q is not empty:
 node = Q.dequeue()
 doSomething(node)
 for neighbor in adj nodes:
 if not neighbor.visited:
 neighbor.visited = true
 Q.enqueue(neighbor)

Mark nodes as visited otherwise you will loop forever!
Depth First Traversal

- To do DFT on graph, replace queue with stack
- Can also be done recursively

```python
function recursiveDFT(node):
    // Input: start node
    // Output: Nothing
    node.visited = true
    for neighbor in node’s adjacent vertices:
        if not neighbor.visited:
            recursiveDFT(neighbor)
```
Applications: Flight Paths Exist

- Given undirected graph with airports & flights
 - is it possible to fly from one airport to another?
- Strategy
 - use breadth first search starting at first node
 - and determine if ending airport is ever visited
Applications: Flight Paths Exist

- Is there flight from SFO to PVD?
Applications: Flight Paths Exist

- Is there flight from SFO to PVD?
Applications: Flight Paths Exist

- Is there a flight from SFO to PVD?

![Network Diagram]

- PWM
- JFK
- SFO
- ORD
- PVD
- HNL
- LAX
- DFW
- LGA
- MIA
Applications: Flight Paths Exist

- Is there flight from SFO to PVD?

- Yes! but how do we do it with code?
Function `pathExists(from, to):`

// Input: from: vertex, to: vertex
// Output: true if path exists, false otherwise

Q = new Queue()
from.visited = true
Q.enqueue(from)

while Q is not empty:
 airport = Q.dequeue()
 if airport == to:
 return true
 for neighbor in airport’s adjacent nodes:
 if not neighbor.visited:
 neighbor.visited = true
 Q.enqueue(neighbor)

return false
Applications: Flight Layovers

- Given undirected graph with airports & flights
 - decorate vertices w/ least number of stops from a given source
 - if no way to get to an airport decorate w/ \(\infty \)

- Strategy
 - decorate each node w/ initial ‘stop value’ of \(\infty \)
 - use breadth first search to decorate each node…
 - …w/ ‘stop value’ of one greater than its previous value
function numStops(G, source):
 //Input: G: graph, source: vertex
 //Output: Nothing
 //Purpose: decorate each vertex with the lowest number of layovers from source.

 for every node in G:
 node.stops = infinity

 Q = new Queue()
 source.stops = 0
 source.visited = true
 Q.enqueue(source)
 while Q is not empty:
 airport = Q.dequeue()
 for neighbor in airport’s adjacent nodes:
 if not neighbor.visited:
 neighbor.visited = true
 neighbor.stops = airport.stops + 1
 Q.enqueue(neighbor)