Graphs

CS16: Introduction to Data Structures & Algorithms
Spring 2018
Outline

- What is a Graph
- Terminology
- Properties
- Graph Types
- Representations
- Performance
- BFS/DFS
- Applications
What is a Graph

- A graph is defined by
 - a set of vertices \(V \)
 - a set of edges \(E \)
- Vertices and edges can both store data
- Example
 - vertices represent airports & stores airport code
 - edges represent routes & stores distance
Terminology

- Endpoints or end vertices of an edge
 - \(U\) and \(V\) are endpoints of edge \(a\)
- Incident edges of a vertex
 - \(a, b, d\) are incident to \(V\)
- Adjacent vertices
 - \(U\) and \(V\) are adjacent
- Degree of a vertex
 - \(X\) has degree of 5
- Parallel (multiple) edges
 - \(h, i\) are parallel edges
- Self-loops
 - \(j\) is a self-looped edge
Terminology

- A path is a sequence of alternating vertices and edges
 - begins and ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are visited at most once
- Examples
 - $P_1 = V \rightarrow_b X \rightarrow_h Z$ is a simple path
 - $P_2 = U \rightarrow_c W \rightarrow_e X \rightarrow_g Y \rightarrow_f W \rightarrow_d V$ is not a simple path, but is still a path
Applications

- Flight networks
- Road networks & GPS
- The Web
 - pages are vertices
 - links are edges
- The Internet
 - routers and devices are vertices
 - network connections are edges
- Facebook
 - profiles are vertices
 - friendships are edges
Graph Properties

- A graph $G' = (V', E')$ is a **subgraph** of $G = (V, E)$ if $V' \subseteq V$ and $E' \subseteq E$.

- A graph is **connected** if there exists a path from each vertex to every other vertex.

- A path is a **cycle** if it starts and ends at the same vertex.

- A graph is **acyclic** if it has no cycles.
Graph Properties

- **A spanning tree** of G is a subgraph with
 - all of G’s vertices in a single tree
 - and enough edges to connect each vertex w/o cycles

G

Spanning tree of G

No cycles!
Graphs

Activity #1

1 min
Graphs

Activity #1

1 min
Graphs

Activity #1

0 min
Graph Properties

- A **spanning forest** is
 - a subgraph that consists of a spanning tree in each connected component of graph
- Spanning forests never contain cycles
 - this might not be the “best” or shortest path to each node

![Diagram of graph properties]

HNL — SFO — LAX

ORD — DFW — LGA — MIA — PVD

12
Graph Properties

- \(G \) is a tree if and only if it satisfies any of these conditions
 - \(G \) has \(|V| - 1\) edges and no cycles
 - \(G \) has \(|V| - 1\) edges and is connected
 - \(G \) is connected, but removing any edge disconnects it
 - \(G \) is acyclic, but adding any edges creates a cycle
 - Exactly one simple path connects each pair of vertices in \(G \)
Graph Proof 1

- Prove that
 - the sum of the degrees of all vertices of some graph G...
 - ...is twice the number of edges of G
- Let $V = \{v_1, v_2, \ldots, v_p\}$, where p is the number of vertices
- The total sum of degrees D is such that
 - $D = \deg(v_1) + \deg(v_2) + \ldots + \deg(v_p)$
- But each edge is counted twice in D
 - one for each of the two vertices incident to the edge
- So $D = 2|E|$, where $|E|$ is the number of edges.
Graph Proof 2

- Prove using induction that if \(G \) is connected then
 - \(|E| \geq |V| - 1\)
 - or \(|E| \geq n - 1\), where \(n = |V| \) is number of vertices
- Base case \(n=1 \)
 - If graph has one vertex then it will have 0 edges so \(0 \geq 1 - 1 \)
- Inductive hypothesis
 - If graph has \(n=k \) vertices then \(|E| \geq k-1\)
- Inductive step
 - Let \(G \) be any connected graph with \(n=k+1 \) vertices
 - We must show that \(|E| \geq k\)
Graph Proof 2

- Inductive step
 - Let G be any connected graph with $n = k + 1$ vertices
 - We must show that $|E| \geq k$

- Let u be the vertex of minimum degree in G
 - $\deg(u) \geq 1$ since G is connected

- If $\deg(u) = 1$
 - Let G' be G without u and its 1 incident edge
 - G' has k vertices because we removed 1 vertex from G
 - G' is still connected because we only removed a leaf
 - So by inductive hypothesis, G' has at least $k - 1$ edges
 - which means that G has at least k edges
Graph Proof 2

- If \(\deg(u) \geq 2 \)
 - Every vertex has at least two incident edges
 - So the total degree \(D \) of the graph is \(D \geq 2(k+1) \)
 - But we know from the last proof that \(D=2|E| \)
 - so \(2|E| \geq 2(k+1) \Rightarrow |E| \geq k+1 \Rightarrow |E| \geq k \)
- We showed it is true for \(n=1 \) (base case)...
 - ...and for \(n=k+1 \) assuming it is true for \(n=k \)...
 - ...so true for all \(n \geq 1 \)
Edge Types

- Undirected edge
 - undirected pair of vertices \((u,v)\)
 - for example a flight route

- Directed edge
 - ordered pair of vertices \((u,v)\)
 - first vertex \(u\) is the origin
 - second vertex \(v\) is the destination
 - for example a flight
Graph Types: Undirected Graph

- Undirected graph
 - all edges are undirected
Graph Types: Directed Graph

- Directed graph
 - all edges are directed
Directed Acyclic Graph (DAG)

means ‘is a prerequisite for’

We’ll talk much more about DAGs in future lectures…

Acyclic = without cycles
Graph Representations

- Vertices usually stored in a List or Set
- 3 common ways of representing which vertices are adjacent
 - Edge list (or set)
 - Adjacency lists (or sets)
 - Adjacency matrix
Edge List

- Represents adjacencies as a list of pairs
- Each element of list is a single edge \((a, b)\)
- Since order of list doesn’t matter
 - can use hashset to improve runtime of adjacency testing

\[
[(1,1), (1, 2), (1, 5), (2, 3), (2, 5), (3, 4), (4, 5), (4, 6)]
\]
Adjacency Lists

- Each vertex has an associated list with its neighbors
- Since order of these lists doesn’t matter
 - can be hashsets instead to make adjacency testing faster
Using Hashsets

- Recall that testing membership in hashset is $O(1)$
- Edge List represented as a hashset
 - $A = \{(1,1),(1,2),(1,5),(2,3),(2,5),(3,4),(4,5),(4,6)\}$
 - $A\.contains((4,5))$ is $O(1)$
- Adjacency List “lists” represented as hashsets
 - $B = \{\{1,2,5\},\{1,3,5\},\{2,4\},\{3,5,6\},\{1,2,4\},\{4\}\}$
 - $B[2]\.contains(5)$ is $O(1)$
- Could also be implemented as hash table of hashsets!
 - use hash table to find appropriate hashset then test hashset
Adjacency Matrix

- Matrix with \(n \) rows and \(n \) columns
 - \(n \) is number of vertices
 - If \(u \) is adjacent to \(v \) then \(M[u,v] = T \)
 - If \(u \) is not adjacent to \(v \) then \(M[u,v] = F \)
 - If graph is undirected then \(M[u,v] = M[v,u] \)
Adjacency Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Adjacency Matrix

- Initialize matrix to predicted size of our graph
 - we can always expand later
- When vertex is added to graph
 - reserve a row and column of matrix for that vertex
- When vertex is removed
 - set its row and column to false
- Since we can’t remove rows/columns from arrays
 - keep separate collection of vertices that are actually present in graph
Graph ADT

- Vertices and edges store values
 - Ex: edge weights
- Accessor methods
 - `vertices()`
 - `edges()`
 - `incidentEdges(vertex)`
 - `areAdjacent(v1, v2)`
 - `endVertices(edge)`
 - `opposite(vertex, edge)`
- Update methods
 - `insertVertex(value)`
 - `insertEdge(v1, v2)`
 - sometimes this function also takes a value
 - so `insertEdge(v1, v2, val)`
 - `removeVertex(vertex)`
 - `removeEdge(edge)`
Big-O Performance

Activity #2

3 min
Big-O Performance

Activity #2

3 min
Big-O Performance

Activity #2
Big-O Performance

Activity #2

1 min
Big-O Performance

Activity #2
Big-O Performance

<table>
<thead>
<tr>
<th></th>
<th>Edge Set</th>
<th>Adjacency Sets</th>
<th>Adjacency Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Space(^1)</td>
<td>(O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>vertices()(^1)</td>
<td>(O(1)^*)</td>
<td>(O(1)^*)</td>
<td>(O(1)^*)</td>
</tr>
<tr>
<td>edges()</td>
<td>(O(1)^*)</td>
<td>(O(</td>
<td>E</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>(O(</td>
<td>E</td>
<td>))</td>
</tr>
<tr>
<td>areAdjacent ((v_1, v_2))</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>insertVertex(v)</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(</td>
</tr>
<tr>
<td>insertEdge(v_1, v_2)</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>(O(</td>
<td>E</td>
<td>))</td>
</tr>
<tr>
<td>removeEdge(v_1, v_2)</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>

* in place (return pointer)

\(^1\) In all approaches, we maintain an additional list or set of vertices
Big-O Performance (Edge Set)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertices()</td>
<td>$O(1)$</td>
<td>Return set of vertices</td>
</tr>
<tr>
<td>edges()</td>
<td>$O(1)$</td>
<td>Return set of edges</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>areAdjacent(v<sub>1</sub>,v<sub>2</sub>)</td>
<td>$O(1)$</td>
<td>Check if (v_1,v_2) exists in the set</td>
</tr>
<tr>
<td>insertVertex(v)</td>
<td>$O(1)$</td>
<td>Add vertex v to the vertex list</td>
</tr>
<tr>
<td>insertEdge(v<sub>1</sub>,v<sub>2</sub>)</td>
<td>$O(1)$</td>
<td>Add element (v_1,v_2) to the set</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>removeEdge(v<sub>1</sub>,v<sub>2</sub>)</td>
<td>$O(1)$</td>
<td>Remove edge (v_1,v_2)</td>
</tr>
</tbody>
</table>
Big-O Performance (Adjacency Set)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertices()</td>
<td>$O(1)$</td>
<td>Return the set of vertices</td>
</tr>
<tr>
<td>edges()</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>$O(1)$</td>
<td>Return v’s edge set</td>
</tr>
<tr>
<td>areAdjacent(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Check if $v₂$ is in $v₁$’s set</td>
</tr>
<tr>
<td>insertVertex(v)</td>
<td>$O(1)$</td>
<td>Add vertex v to the vertex set</td>
</tr>
<tr>
<td>insertEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Add $v₁$ to $v₂$’s edge set and vice versa</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>removeEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Remove $v₁$ from $v₂$’s set and vice versa</td>
</tr>
</tbody>
</table>
Big-O Performance (Adjacency Matrix)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertices()</td>
<td>$O(1)$</td>
<td>Return the set of vertices</td>
</tr>
<tr>
<td>edges()</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: row/col are the same in an undirected graph.</td>
</tr>
<tr>
<td>areAdjacent(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Check index $(v₁,v₂)$ for a true</td>
</tr>
<tr>
<td>insertVertex(v)</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>insertEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Set index $(v₁,v₂)$ to true</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>removeEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Set index $(v₁,v₂)$ to false</td>
</tr>
</tbody>
</table>
BFT and DFT

- Remember BFT and DFT on trees?
- We can also do them on graphs
 - a tree is just a special kind of graph
 - often used to find certain values in graphs
BFT/DFT on Graphs

Activity #3

1 min
BFT/DFT on Graphs

Activity #3

1 min
BFT/DFT on Graphs
Breadth First Traversal: Tree vs. Graph

function **treeBFT**(root):

// Input: Root node of tree
// Output: Nothing
Q = new Queue()
Q.enqueue(root)
while Q is not empty:
 node = Q.dequeue()
doSomething(node)
enqueue node’s children

doSOMETHING() could
print, add to list, decorate
node etc…

function **graphBFT**(start):

// Input: start vertex
// Output: Nothing
Q = new Queue()
start.visited = true
Q.enqueue(start)
while Q is not empty:
 node = Q.dequeue()
doSomething(node)
for neighbor in adj nodes:
 if not neighbor.visited:
 neighbor.visited = true
 Q.enqueue(neighbor)

Mark nodes as visited otherwise you will loop forever!
Depth First Traversal

- To do DFT on graph, replace queue with stack
- Can also be done recursively

```javascript
function recursiveDFT(node):
    // Input: start node
    // Output: Nothing
    node.visited = true
    for neighbor in node’s adjacent vertices:
        if not neighbor.visited:
            recursiveDFT(neighbor)
```
Applications: Flight Paths Exist

- Given undirected graph with airports & flights
 - is it possible to fly from one airport to another?
- Strategy
 - use breadth first search starting at first node
 - and determine if ending airport is ever visited
Applications: Flight Paths Exist

- Is there a flight from SFO to PVD?
Applications: Flight Paths Exist

- Is there flight from SFO to PVD?
Applications: Flight Paths Exist

- Is there flight from SFO to PVD?
Applications: Flight Paths Exist

- Is there flight from SFO to PVD?

- Yes! but how do we do it with code?
Flight Paths Exist Pseudo-Code

function $\text{pathExists}(\text{from}, \text{to})$:

 // Input: from: vertex, to: vertex
 // Output: true if path exists, false otherwise

 $Q = \text{new Queue()}$
 $\text{from.visited} = \text{true}$
 $Q.\text{enqueue}(\text{from})$

 while Q is not empty:

 $\text{airport} = Q.\text{dequeue}()$

 if $\text{airport} == \text{to}$:
 return true

 for neighbor in airport’s adjacent nodes:

 if not neighbor.visited:
 $\text{neighbor.visited} = \text{true}$
 $Q.\text{enqueue}(\text{neighbor})$

 return false
Applications: Flight Layovers

- Given undirected graph with airports & flights
 - decorate vertices w/ least number of stops from a given source
 - if no way to get to an airport decorate w/ ∞

- Strategy
 - decorate each node w/ initial ‘stop value’ of ∞
 - use breadth first search to decorate each node…
 - …w/ ‘stop value’ of one greater than its previous value
function **numStops**(G, source):

// Input: G: graph, source: vertex
// Output: Nothing
// Purpose: decorate each vertex with the lowest number of layovers from source.

for every node in G:
 node.stops = infinity

Q = new Queue()
source.stops = 0
source.visited = true
Q.enqueue(source)

while Q is not empty:
 airport = Q.dequeue()
 for neighbor in airport’s adjacent nodes:
 if not neighbor.visited:
 neighbor.visited = true
 neighbor.stops = airport.stops + 1
 Q.enqueue(neighbor)