
Graphs
CS16: Introduction to Data Structures & Algorithms

Spring 2020



Outline
‣ What is a Graph
‣ Terminology
‣ Properties
‣ Graph Types
‣ Representations
‣ Performance
‣ BFS/DFS
‣ Applications

2



What is a Graph
‣ A graph is defined by 
‣ a set of vertices (or vertexes, or nodes) V

‣ a set of edges E

‣ Vertices and edges can both store data



Example: Social Graph

Kieran Healy, “Using metadata to find Paul Revere”
https://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/
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Terminology
‣ Endpoints or end vertices of an edge

‣ U and V are endpoints of edge a

‣ Incident edges of a vertex
‣ a, b, d are incident to  V

‣ Adjacent vertices
‣ U and V are adjacent

‣ Degree of a vertex
‣ X has degree of 5

‣ Parallel (multiple) edges
‣ h, i are parallel edges

‣ Self-loops
‣ j is a self-looped edge
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Terminology
‣ A path is a sequence of alternating 

vertices and edges 
‣ begins and ends with a vertex
‣ each edge is preceded and followed by 

its endpoints

‣ Simple path
‣ path such that all its vertices and edges 

are visited at most once

‣ Examples
‣ P1 = V  →b  X →h Z is a simple path

‣ P2= U →c W →e X →g Y →f W →d V 
is not a simple path, but is still a path
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Applications
‣ Flight networks
‣ Road networks & GPS
‣ The Web

‣ pages are vertices
‣ links are edges

‣ The Internet
‣ routers and devices are vertices
‣ network connections are edges

‣ Facebook 
‣ profiles are vertices
‣ friendships are edges
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Graph Properties
‣ A graph G’=(V’,E’) is a subgraph of G=(V,E) 
‣ if  V’ ⊆ V and E’ ⊆ E

‣ A graph is connected if
‣ there exists path from each vertex  

to every other vertex

‣ A path is a cycle if
‣ it starts and ends at the same vertex

‣ A graph is acyclic 
‣ if it has no cycles
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A Subgraph
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Connected?
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Cycles
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Acyclic?
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Graph Properties
‣ A spanning tree of G is a subgraph with
‣ all of G’ s vertices in a single tree 
‣ and enough edges to connect each vertex w/o cycles
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Spanning tree
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Graph Properties
‣ A spanning forest is 
‣ a subgraph that consists of a spanning tree in each 

connected component of graph

‣ Spanning forests never contain cycles 
‣ this might not be the “best” or shortest path to each 

node
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Graph Properties
‣ G is a tree if and only if it satisfies any of these 

conditions
‣ G has |V|-1 edges and no cycles

‣ G has |V|-1 edges and is connected

‣ G is connected, but removing any edge disconnects it

‣ G is acyclic, but adding any edges creates a cycle
‣ Exactly one simple path connects each pair of 

vertices in G
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Graph Proof 1
‣ Prove that 
‣ the sum of the degrees of all vertices of some graph G…

‣ …is twice the number of edges of G

‣ Let V = {v1,v2,…,vp}, where p is number of vertices
‣ The total sum of degrees D is such that

‣ D = deg(v1) + deg(v2) + … + deg(vp)

‣ But each edge is counted twice in D 
‣ one for each of the two vertices incident to the edge 

‣ So D = 2|E|, where |E| is the number of edges.
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Graph Proof 2
‣ Prove using induction that if G is connected then 

‣ |E| ≥ |V|–1, for all |V|≥1

‣ Base case |V|=1 
‣ If graph has one vertex then it will have 0 edges 
‣ so since |E|=0 and |V|-1=1-1=0, we have |E| ≥|V|-1

‣ Inductive hypothesis
‣ If graph has |V|=k vertices then |E|≥k–1 

‣ Inductive step 
‣ Let G be any connected graph with |V|=k+1 vertices

‣ We must show that |E|≥k  
20



Graph Proof 2
‣ Inductive step 

‣ Let G be any connected graph with |V|=k+1 vertices 

‣ We must show that |E| ≥ k  

‣ Let u be the vertex of minimum degree in G 
‣ deg(u) ≥ 1 since G is connected

‣ If deg(u) = 1
‣ Let G’ be G without u and its 1 incident edge

‣ G’ has k vertices because we removed 1 vertex from G

‣ G’ is still connected because we only removed a leaf 

‣ So by inductive hypothesis, G’ has at least k–1 edges 

‣ which means that G has at least k edges
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Graph Proof 2
‣ If deg(u) ≥ 2
‣ Every vertex has at least two incident edges
‣ So the total degree D of the graph is  D ≥ 2(k+1)
‣ But we know from the last proof that D=2|E|

‣ so 2|E| ≥ 2(k+1)  ⟹  |E| ≥ k+1  ⟹  |E|≥k

‣ We showed it is true for |V|=1 (base case)…
‣ …and for |V|=k+1 assuming it is true for |V|=k…

‣ …so it is true for all |V|≥1
22



Undirected graph
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Directed graph
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Edge Types
‣ Undirected edge
‣ unordered pair of vertices (L,R)

‣ Directed edge
‣ ordered pair of vertices (L,R)
‣ first vertex L is the origin
‣ second vertex R is the destination
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Directed Acyclic Graph (DAG)
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means ‘is a prerequisite for’

We’ll talk much 
more about DAGs 
in future lectures…



Graph Representations
‣ Vertices usually stored in a List or Set
‣ 3 common ways of representing which vertices 

are adjacent
‣ Edge list (or set)
‣ Adjacency lists (or sets)
‣ Adjacency matrix
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Edge List
‣ Represents adjacencies as a list of pairs
‣ Each element of list is a single edge (a,b)
‣ Since the order of list doesn’t matter 
‣ can use hashset to improve runtime of adjacency testing
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[(1,1),(1,2),(1,5),(2,3),(2,5),(3,4),(4,5),(4,6)]



Edge Set
‣ Store all the edges in a Hashset
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Adjacency Lists
‣ Each vertex has an associated list with its neighbors
‣ Since the order of elements in lists doesn’t matter 
‣ lists can be hashsets instead
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Adjacency Set
‣ Each vertex associated Hashset of its neighbors
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Adjacency Matrix
‣ Matrix with n rows and n columns 
‣ n is number of vertices

‣ If u is adjacent to v then M[u,v]=T

‣ If u is not adjacent to v then M[u,v]=F

‣ If graph is undirected then M[u,v]=M[v,u]
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Adjacency Matrix
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1 2 3 4 5 6

1 T T F F T F

2 T F T F T F

3 F T F T F F

4 F F T F T T

5 T T F T F F

6 F F F T F F



Adjacency Matrix
‣ Initialize matrix to predicted size of graph 
‣ we can always expand later

‣ When vertex is added to graph
‣ reserve a row and column of matrix for that vertex

‣ When vertex is removed
‣ set its entire row and column to false

‣ Since we can’t remove rows/columns from arrays 
‣ keep separate collection of vertices that are actually present 

in graph
34



Graph ADT
‣ Vertices and edges can store values

‣ Ex: edge weights

‣ Accessor methods

‣ vertices( )

‣ edges( )

‣ incidentEdges(vertex)

‣ areAdjacent(v1, v2)

‣ endVertices(edge)

‣ opposite(vertex, edge)

‣ Update methods
‣ insertVertex(value)
‣ insertEdge(v1, v2)

‣ sometimes this function also  
takes a value  
so insertEdge(v1, v2,val)

‣ removeVertex(vertex)
‣ removeEdge(edge)



Big-O Performance

36
3 minActivity #1



Big-O Performance
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Big-O Performance
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Big-O Performance
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Big-O Performance
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Big-O Performance
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Edge Set Adjacency Sets Adjacency Matrix

Overall Space1 O(|V| + |E|) O(|V| + |E|) O(|V|2)

vertices( )1 O(1)* O(1)* O(1)*

edges( ) O(1)* O(|E|) O(|V|2)

incidentEdges(v) O(|E|) O(1)* O(|V|)

areAdjacent (v1, v2) O(1) O(1) O(1)

insertVertex(v) O(1) O(1) O(|V|)

insertEdge(v1, v2) O(1) O(1) O(1)

removeVertex(v) O(|E|) O(|V|) O(|V|)

removeEdge(v1, v2) O(1) O(1) O(1)

* in place  
(return pointer)

1 In all approaches, we maintain  
an additional list or set of vertices



Big-O Performance (Edge Set)
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Operation Runtime Explanation
vertices() O(1) Return set of vertices
edges() O(1) Return set of edges

incidentEdges(v) O(|E|) Iterate through each edge and check 
if it contains vertex v

areAdjacent(v1,v2) O(1) Check if (v1,v2) exists in the set

insertVertex(v) O(1) Add vertex v to the vertex list
insertEdge(v1,v2) O(1) Add element (v1,v2) to the set

removeVertex(v) O(|E|) Iterate through each edge and 
remove it if it has vertex v

removeEdge(v1,v2) O(1) Remove edge (v1,v2)



Big-O Performance (Adjacency Set)
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Operation Runtime Explanation
vertices() O(1) Return the set of vertices

edges() O(|E|) Concatenate each vertex with its 
subsequent vertices

incidentEdges(v) O(1) Return v’s edge set
areAdjacent(v1,v2) O(1) Check if v2 is in v1’s set

insertVertex(v) O(1) Add vertex v to the vertex set

insertEdge(v1,v2) O(1) Add v1 to v2’s edge set and vice versa

removeVertex(v) O(|V|) Remove v from each of its adjacent 
vertices’ sets and remove v’s set

removeEdge(v1,v2) O(1) Remove v1 from v2’s set and vice versa



Big-O Performance (Adjacency Matrix)
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Operation Runtime Explanation
vertices() O(1) Return the set of vertices
edges() O(|V|2) Iterate through the entire matrix 

incidentEdges(v) O(|V|)
Iterate through v’s row or column to 

check for trues
Note: row/col are the same in an undirected graph.

areAdjacent(v1,v2) O(1) Check index (v1,v2) for a true

insertVertex(v) O(|V|)* Add vertex v to the matrix (* O(1) 
amortized)

insertEdge(v1,v2) O(1) Set index (v1,v2) to true

removeVertex(v) O(|V|) Set v’s row and column to false and 
remove v from the vertex list 

removeEdge(v1,v2) O(1) Set index (v1,v2) to false



BFT and DFT
‣ Remember BFT and DFT on trees?
‣ We can also do them on graphs
‣ a tree is just a special kind of graph
‣ often used to find certain values in graphs
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BFT/DFT on Graphs
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BFT/DFT on Graphs
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BFT/DFT on Graphs
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Breadth First Traversal: Tree vs. Graph
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function treeBFT(root):
//Input: Root node of tree
//Output: Nothing
Q = new Queue()
Q.enqueue(root)
while Q is not empty:

node = Q.dequeue()
doSomething(node)
enqueue node’s children

function graphBFT(start):
//Input: start vertex
//Output: Nothing
Q = new Queue()
start.visited = true
Q.enqueue(start)
while Q is not empty:

node = Q.dequeue()
doSomething(node)
for neighbor in adj nodes:

if not neighbor.visited:
neighbor.visited = true
Q.enqueue(neighbor)

doSomething( ) could  
print, add to list, decorate 
node etc…

Mark nodes as visited otherwise you will loop 
forever!



Depth First Traversal
‣ To do DFT on graph, replace queue with stack
‣ Can also be done recursively
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function recursiveDFT(node):
// Input: start node
// Output: Nothing

   node.visited = true
   for neighbor in node’s adjacent vertices:

if not neighbor.visited:
recursiveDFT(neighbor)



Applications: Flight Paths Exist
‣ Given undirected graph with airports & flights
‣ is it possible to fly from one airport to another?

‣ Strategy 
‣ use breadth first search starting at first node 
‣ and determine if ending airport is ever visited
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Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?
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Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?
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Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?
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Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

‣ Yes! but how do we do it with code?
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Flight Paths Exist Pseudo-Code
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function pathExists(from, to):
//Input: from: vertex, to: vertex
//Output: true if path exists, false otherwise
Q = new Queue()
from.visited = true
Q.enqueue(from)
while Q is not empty:

airport = Q.dequeue()
if airport == to:

return true
for neighbor in airport’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
Q.enqueue(neighbor)

return false



Applications: Flight Layovers
‣ Given undirected graph with airports & flights
‣ decorate vertices w/ least number of  

stops from a given source 

‣ if no way to get to a an airport decorate w/ ∞
‣ Strategy 
‣ decorate each node w/ initial ‘stop value’ of ∞ 
‣ use breadth first search to decorate each node…
‣ …w/ ‘stop value’ of one greater than its previous value
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Flight Layovers Pseudo-Code
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function numStops(G, source):
//Input: G: graph, source: vertex

   //Output: Nothing
   //Purpose: decorate each vertex with the lowest number of
   //         layovers from source.
   
   for every node in G:

node.stops = infinity

   Q = new Queue()
   source.stops = 0
   source.visited = true
   Q.enqueue(source)
   while Q is not empty:

airport = Q.dequeue()   
for neighbor in airport’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
neighbor.stops = airport.stops + 1
Q.enqueue(neighbor)



Flight Layovers Pseudo-Code
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Flight Layovers Pseudo-Code
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