Graphs

CSI6: Introduction to Data Structures & Algorithms Spring 2020

Outline

- What is a Graph
- Terminology
- Properties
- Graph Types
- Representations
- Performance
- BFS/DFS
- Applications

What is a Graph

- A graph is defined by
 - ▶ a set of vertices (or vertexes, or nodes) V
 - a set of edges E
- Vertices and edges can both store data

Example: Social Graph

Kieran Healy, "Using metadata to find Paul Revere"

https://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/

Terminology

- Endpoints or end vertices of an edge
 - U and V are endpoints of edge a
- Incident edges of a vertex
 - a, b, d are incident to V
- Adjacent vertices
 - **U** and **V** are adjacent
- Degree of a vertex
 - X has degree of 5
- Parallel (multiple) edges
 - h, i are parallel edges
- Self-loops
 - j is a self-looped edge

Terminology

- A path is a sequence of alternating vertices and edges
 - begins and ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are visited at most once
- Examples
 - $P_1 = V \rightarrow_b X \rightarrow_h Z$ is a simple path
 - ▶ $P_2 = U \rightarrow_c W \rightarrow_e X \rightarrow_g Y \rightarrow_f W \rightarrow_d V$ is not a simple path, but is still a path

Applications

- Flight networks
- Road networks & GPS
- The Web
 - pages are vertices
 - links are edges
- The Internet
 - routers and devices are vertices
 - network connections are edges
- Facebook
 - profiles are vertices
 - friendships are edges

Graph Properties

- A graph G'=(V', E') is a subgraph of G=(V, E)
 - if $\mathbf{V'} \subseteq \mathbf{V}$ and $\mathbf{E'} \subseteq \mathbf{E}$
- A graph is connected if
 - there exists path from each vertex to every other vertex
- A path is a cycle if
 - it starts and ends at the same vertex
- A graph is **acyclic**
 - if it has no cycles

A Subgraph

Connected?

Connected?

3

4

2 connected components

Cycles

Acyclic?

Graph Properties

- A spanning tree of G is a subgraph with
 - ▶ all of **G**'s vertices in a single *tr*ee
 - and enough edges to connect each vertex w/o cycles

Spanning tree

Graph Properties

A spanning forest is

- a subgraph that consists of a spanning tree in each connected component of graph
- Spanning forests never contain cycles
 - this might not be the "best" or shortest path to each node

Spanning forest

Graph Properties

- G is a tree if and only if it satisfies any of these conditions
 - ► G has |V|-1 edges and no cycles
 - ► G has |V|-1 edges and is connected
 - G is connected, but removing any edge disconnects it
 - G is acyclic, but adding any edges creates a cycle
 - Exactly one simple path connects each pair of vertices in G

Graph Proof I

- Prove that
 - the sum of the degrees of all vertices of some graph G...
 - ▶ ...is twice the number of edges of **G**
- Let $V = \{v_1, v_2, ..., v_p\}$, where p is number of vertices
- The total sum of degrees **D** is such that
 - $D = deg(v_1) + deg(v_2) + ... + deg(v_p)$
- But each edge is counted twice in **D**
 - one for each of the two vertices incident to the edge
- So D = 2 |E|, where |E| is the number of edges.

Graph Proof 2

- Prove using induction that if G is connected then
 - $|\mathbf{E}| \ge |\mathbf{V}| 1$, for all $|\mathbf{V}| \ge 1$
- ► Base case |V|=1
 - If graph has one vertex then it will have 0 edges
 - so since $|\mathbf{E}| = 0$ and $|\mathbf{V}| 1 = 1 1 = 0$, we have $|\mathbf{E}| \ge |\mathbf{V}| 1$
- Inductive hypothesis
 - If graph has |V| = k vertices then $|E| \ge k-1$
- Inductive step
 - Let **G** be any connected graph with $|\mathbf{V}| = \mathbf{k+1}$ vertices
 - We must show that $|\mathbf{E}| \ge \mathbf{k}$

Graph Proof 2

- Inductive step
 - Let **G** be any connected graph with $|\mathbf{V}| = \mathbf{k} + 1$ vertices
 - We must show that $|\mathbf{E}| \geq \mathbf{k}$
- Let u be the vertex of minimum degree in G
 - $deg(u) \ge 1$ since G is connected
- |f deg(u) = 1
 - \blacktriangleright Let G' be G without u and its 1 incident edge
 - \blacktriangleright G' has k vertices because we removed 1 vertex from G
 - G' is still connected because we only removed a leaf
 - ▶ So by inductive hypothesis, G′ has at least k−1 edges
 - which means that G has at least k edges

Graph Proof 2

- $|f deg(u) \ge 2$
 - Every vertex has at least two incident edges
 - So the total degree D of the graph is $D \ge 2(k+1)$
 - But we know from the last proof that D=2 |E|

• so $2|E| \ge 2(k+1) \implies |E| \ge k+1 \implies |E| \ge k$

- We showed it is true for |V|=1 (base case)...
 - ...and for |V| = k+1 assuming it is true for |V| = k...
 - ► ...so it is true for all |V|≥1

Undirected graph

Directed graph

Edge Types

- Undirected edge
 - unordered pair of vertices (L,R)
- Directed edge
 - ordered pair of vertices (L,R)
 - first vertex L is the origin
 - second vertex R is the destination

Directed Acyclic Graph (DAG)

We'll talk much more about DAGs in future lectures...

 \underline{A} cyclic = without cycles

Graph Representations

- Vertices usually stored in a List or Set
- 3 common ways of representing which vertices are adjacent
 - Edge list (or set)
 - Adjacency lists (or sets)
 - Adjacency matrix

Edge List

- Represents adjacencies as a list of pairs
- Each element of list is a single edge (a,b)
- Since the order of list doesn't matter
 - can use hashset to improve runtime of adjacency testing

Edge Set

Store all the edges in a Hashset

Adjacency Lists

- Each vertex has an associated list with its neighbors
- Since the order of elements in lists doesn't matter
 - lists can be hashsets instead

Adjacency Set

Each vertex associated Hashset of its neighbors

Adjacency Matrix

- Matrix with n rows and n columns
 - **n** is number of vertices
 - If \mathbf{u} is adjacent to \mathbf{v} then $M[\mathbf{u}, \mathbf{v}] = \mathbf{T}$
 - If \mathbf{u} is not adjacent to \mathbf{v} then $M[\mathbf{u}, \mathbf{v}] = \mathbf{F}$
- If graph is undirected then M[u,v]=M[v,u]

Adjacency Matrix

	1	2	3	4	5	6
1	Т	Т	F	F	Т	F
2	Т	F	Т	F	T	F
3	F	Т	F	Т	F	F
4	F	F	Т	F	Т	т
5	Т	Т	F	Т	F	F
6	F	F	F	Т	F	F

Adjacency Matrix

- Initialize matrix to predicted size of graph
 - we can always expand later
- When vertex is added to graph
 - reserve a row and column of matrix for that vertex
- When vertex is removed
 - set its entire row and column to false
- Since we can't remove rows/columns from arrays
 - keep separate collection of vertices that are actually present in graph

Graph ADT

- Vertices and edges can store values
 - Ex: edge weights
- Accessor methods
 - vertices()
 - edges()
 - incidentEdges(vertex)
 - areAdjacent(v1, v2)
 - o endVertices(edge)
 - opposite(vertex, edge)

- Update methods
 - insertVertex(value)
 - insertEdge(v1, v2)
 - sometimes this function also takes a value so insertEdge(v1, v2,val)
 - removeVertex(vertex)
 - removeEdge(edge)

	Edge Set	Adjacency Sets	Adjacency Matrix
Overall Space ¹	O(V + E)	O(V + E)	O(V ²)
vertices() ¹	O(1)*	O(1)*	O(1)*
edges()	O(1)*	O(E)	O(V ²)
incidentEdges(v)	O(E)	O(1)*	0(V)
areAdjacent (v1, v2)	0(1)	0(1)	0(1)
insertVertex(v)	0(1)	0(1)	0(V)
insertEdge(v ₁ , v ₂)	0(1)	0(1)	0(1)
removeVertex(v)	O(E)	O(V)	0(V)
removeEdge(v ₁ , v ₂)	0(1)	0(1)	0(1)

¹ In all approaches, we maintain an additional list or set of vertices * in place (return pointer)

Big-O Performance (Edge Set)

Operation	Runtime	Explanation
vertices()	0(1)	Return set of vertices
edges()	0(1)	Return set of edges
incidentEdges(v)	O(E)	Iterate through each edge and check if it contains vertex v
areAdjacent(v1,v2)	0(1)	Check if (v_1, v_2) exists in the set
insertVertex(v)	0(1)	Add vertex ${f v}$ to the vertex list
insertEdge(v ₁ ,v ₂)	0(1)	Add element (\mathbf{v}_1 , \mathbf{v}_2) to the set
removeVertex(v)	O(E)	Iterate through each edge and remove it if it has vertex v
removeEdge(v ₁ ,v ₂)	0(1)	Remove edge (v_1, v_2)

Big-O Performance (Adjacency Set)

Operation	Runtime	Explanation
vertices()	O(1)	Return the set of vertices
edges()	O(E)	Concatenate each vertex with its subsequent vertices
incidentEdges(v)	0(1)	Return ${f v}$'s edge set
areAdjacent(v1,v2)	O(1)	Check if \mathbf{v}_2 is in \mathbf{v}_1 's set
insertVertex(v)	O(1)	Add vertex ${f v}$ to the vertex set
insertEdge(v1,v2)	0(1)	Add \mathbf{v}_1 to \mathbf{v}_2 's edge set and vice versa
removeVertex(v)	O(V)	Remove v from each of its adjacent vertices' sets and remove v 's set
removeEdge(v ₁ ,v ₂)	0(1)	Remove \mathbf{v}_1 from \mathbf{v}_2 's set and vice versa

Big-O Performance (Adjacency Matrix)

Operation	Runtime	Explanation
vertices()	0(1)	Return the set of vertices
edges()	O(V ²)	Iterate through the entire matrix
incidentEdges(v)	O(V)	Iterate through v's row or column to check for trues Note: row/col are the same in an undirected graph.
areAdjacent(v1,v2)	0(1)	Check index (v_1, v_2) for a true
insertVertex(v)	O(V)*	Add vertex v to the matrix (* O(1) amortized)
insertEdge(v ₁ ,v ₂)	0(1)	Set index (v1,v2) to true
removeVertex(v)	O(V)	Set v's row and column to false and remove v from the vertex list
removeEdge(v ₁ ,v ₂)	0(1)	Set index (v_1, v_2) to false

BFT and DFT

- Remember BFT and DFT on trees?
- We can also do them on graphs
 - ▶ a tree is just a special kind of graph
 - often used to find certain values in graphs

BFT/DFT on Graphs

BFT/DFT on Graphs

BFT/DFT on Graphs

Breadth First Traversal: Tree vs. Graph

```
function treeBFT(root):
    //Input: Root node of tree
    //Output: Nothing
    Q = new Queue()
    Q.enqueue(root)
    while Q is not empty:
        node = Q.dequeue()
        doSomething(node)
        enqueue node's children
```

doSomething() could print, add to list, decorate node etc... function graphBFT(start): //Input: start vertex //Output: Nothing Q = new Queue() start.visited = true Q.enqueue(start) while Q is not empty: node = Q.dequeue() doSomething(node) for neighbor in adj nodes: if not neighbor.visited: neighbor.visited = true Q.enqueue(neighbor)

Mark nodes as visited otherwise you will loop forever!

Depth First Traversal

- To do DFT on graph, replace queue with stack
- Can also be done recursively

function recursiveDFT(node):
 // Input: start node
 // Output: Nothing
 node.visited = true
 for neighbor in node's adjacent vertices:
 if not neighbor.visited:
 recursiveDFT(neighbor)

- Given undirected graph with airports & flights
 - is it possible to fly from one airport to another?
- Strategy
 - use breadth first search starting at first node
 - and determine if ending airport is ever visited

► Is there flight from SFO to PVD?

Yes! but how do we do it with code?

Flight Paths Exist Pseudo-Code

function pathExists(from, to):

```
//Input: from: vertex, to: vertex
//Output: true if path exists, false otherwise
Q = new Queue()
from.visited = true
Q.enqueue(from)
while Q is not empty:
    airport = Q.dequeue()
    if airport == to:
       return true
    for neighbor in airport's adjacent nodes:
       if not neighbor.visited:
            neighbor.visited = true
            Q.enqueue(neighbor)
return false
```

Applications: Flight Layovers

- Given undirected graph with airports & flights
 - decorate vertices w/ least number of stops from a given source
 - ▶ if no way to get to a an airport decorate w/ ∞
- Strategy
 - ▶ decorate each node w/ initial 'stop value' of ∞
 - use breadth first search to decorate each node...
 - ...w/ 'stop value' of one greater than its previous value

Flight Layovers Pseudo-Code

```
function numStops(G, source):
   //Input: G: graph, source: vertex
   //Output: Nothing
   //Purpose: decorate each vertex with the lowest number of
   //
              layovers from source.
   for every node in G:
     node.stops = infinity
   Q = new Queue()
   source.stops = 0
   source.visited = true
   Q.enqueue(source)
   while Q is not empty:
      airport = Q.dequeue()
      for neighbor in airport's adjacent nodes:
        if not neighbor.visited:
           neighbor.visited = true
           neighbor.stops = airport.stops + 1
           Q.enqueue(neighbor)
```

Flight Layovers Pseudo-Code

Flight Layovers Pseudo-Code

