Graphs

CS16: Introduction to Data Structures & Algorithms
Spring 2020

Outl

ne

» What is a Graph

» lerminology

» Properties

» Graph Types

» Representations

» Performance

» BFS/
» App

DFS

iIcations

What is a Graph

» A graph Is defined by
» a set of vertices (or vertexes, or nodes) V

» a set of edges E

» Vertices and edges can both store data

-xample: Social Graph

Kieran Healy,“Using metadata to find Paul Revere”

https://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/

lerminology

v

Endpoints or end vertices of an edge

» U and V are endpoints of edge a

v

Incident edges of a vertex

» a, b, dareincdentto V

v

Adjacent vertices

» Uand V are adjacent

v

Degree of a vertex

» X has degree of 5

v

Parallel (multiple) edges

» h, 1 are parallel edges

v

Self-loops

» jis a self-looped edge

lerminology

» A path Is a sequence of alternating
vertices and edges

» begins and ends with a vertex

» each edge is preceded and followed by
its endpoints

» Simple path

» path such that all its vertices and edges
are visited at most once

» Examples

» P1 = V 2y X = Z is a simple path

4
Is not a simple path, but is still a path

6

Applications

v

Flight networks
Road networks & GPS
The Web

» pages are vertices

v

v

» links are edges

The Internet

v

» routers and devices are vertices

» network connections are edges

Facebook

v

» profiles are vertices

» friendships are edges

Graph Properties

» Agraph Gc’'=(v’,E’) Is a subgraph of G=(V,E)
M7 ¢ Vand E’ CE

» A graph is connected if

» there exists path from each vertex
to every other vertex

v

A path is a cycle If
» It starts and ends at the same vertex
» A graph is acyclic

» If It has no cycles

A Subgraph

Connected!

Connected!

2 connected

components

!

|IC

Acyc

Graph Properties

» A spanning tree of G is a subgraph with

» all of G's vertices In a single tree

» and enough edges to connect each vertex w/o cycles

Spanning tree

Graph Properties

» A spanning forest is

» a subgraph that consists of a spanning tree Iin each
connected component of graph

» Spanning forests never contain cycles

» this might not be the “best” or shortest path to each
node

Spanning forest

Graph Properties

» G is atree If and only If It satisfies any of these
conditions

» G has |V |-1 edges and no cycles

» G has |V |-1 edges and Is connected
» G Is connected, but removing any edge disconnects It

» G Is acyclic, but adding any edges creates a cycle

» Exactly one simple path connects each pair of
vertices In G

Graph Proof |

Prove that

v

» the sum of the degrees of all vertices of some graph G...

» ...Is twice the number of edges of G

v

letV = {wvi,Vv2,..,Vp}, Where p Is number of vertices

NS

The total sum of degrees D Is such that

» D = deg(vi1) + deg(v2) + .. + deg(vp)

v

But each edge Is counted twice in D

» one for each of the two vertices incident to the edge

v

SoD = 2|E|,where |E]| is the number of edges.

19

Graph Proof 2

Prove using induction that if G 1s connected then

v

» |E| =z |V]|=1forall |V]|=1

A 4

Base case |V |=1

» If graph has one vertex then it will have 0 edges

» sosince |E|=0 and |V|-1=1-1=0,we have |E| 2|V|-1

v

Inductive hypothesis
» If graph has | V| =k vertices then |E|zk—1

v

Inductive step
» Let G be any connected graph with |V | =k+1 vertices
» We must show that |E |2k

20

Graph Proof 2

» Inductive step
» Let G be any connected graph with |V |=k+1 vertices
» We must show that |E| = k

» Let u be the vertex of minimum degree in G
» deg(u) = 1 since Gis connected

» fdeg(u) =1
» Let G’ be G without u and its 1 incident edge

G’ has k vertices because we removed 1 vertex from G

v

v

G’ is still connected because we only removed a leaf

v

So by inductive hypothesis, G’ has at least k—1 edges

v

which means that G has at least k edges

2

Graph Proof 2

» fdeg(u) = 2
» Every vertex has at least two incident edges
» S0 the total degree D of the graphis D = 2 (k+1)
» But we know from the last proof that D=2 | E |

o2 El =2 2(ktl) = |E| 2 ktl = SiElEaS

» We showed it is true for |V |=1 (base case)...

» ...and for | V|=k+1 assuming it is true for |V |=k...

» ...s0 itistrue forall |V |=1

i)

ndirected graph

Directed grapn

The British
are coming!

~dge lypes

R eliclfectediedse

» unordered pair of vertices (LR)
RlEcclica cdge

» ordered palr of vertices (L,R)

» first vertex L is the origin

» second vertex R Is the destination

L

Directed Acyclic Graph (DAG)

>
means ‘is a prerequisite for q

D ol (o514 (o)

@@ o e
We'll talk much

more about DAGS Acyclic = without cycles
in future lectures. ..

26

Graph Representations

» Vertices usually stored in a List or Set

» 3 common ways of representing which vertices
are adjacent

» Edge list (or set)
» Adjacency lists (or sets)

» Adjacency matrix

i)

“doe List

» Represents adjacencies as a list of pairs
» Each element of list Is a single edge (a,b)

» Since the order of list doesn't matter

» can use hashset to improve runtime of adjacency testing

ee Sct

» Store all the edges In a Hashset

(3,4) (2,5) (1,1) (1,5)

(4,6) (4,5) (leon

(2,3)

Adjacency Lists

» Each vertex has an associated list with rts neighbors

» Since the order of elements in lists doesnt matter

» lists can be hashsets instead

w N
B B W N R R
N U W N

Adjacency Set

» Each vertex associated Hashset of its neighbors

1 |e—— Hashsetof {1,2,5}

2 |— Hashsetof {1,3,5}

3 |e—— Hashset of {2,4}

4 |e—— Hashset of {3,5,6}

5 |e—— Hashset of {1,2,4}

6 |e—— Hashset of {4}

Adjacency Matrix

» Matrix with n rows and n columns
» n Is number of vertices
» Ifuis adjacent to v then M[u, v]=T

» [T u s not adjacent to v then M[u, v]=F

» It graph Is undirected then M[u,v]=M[Vv,u]

i)

Adjacency Matrix

55

Adjacency Matrix

v

Initialize matrix to predicted size of graph

» we can always expand later

v

When vertex Is added to graph

» reserve a row and column of matrix for that vertex

When vertex Is removed

v

» set its entire row and column to false

» Since we can't remove rows/columns from arrays

» keep separate collection of vertices that are actually present
In graph

Bat

Graph AD T

» Vertices and edges can store values

» Ex: edge weights

» Accessor methods » Update methods
» vertices() » insertVertex(value)
, edges() » insertEdge(v|, \»)

» sometimes this function also
takes a value
» areAdjacent(v|, v2) so insertEdge(v, v,,val)

» endVertices(edge) » removeVertex(vertex)

» opposite(vertex, edge) » removeEdge(edge)

» incidentEdges(vertex)

Big-O Performance

(\? o Activity #I

Big-O Performance

(\? o Activity #I

Big-O Performance

2 o Activity #I

Big-O Performance

o Activity #I

7 172472

Big-O Performance

Activity #1

b

Big-O Performance

Edge Set

Adjacency Sets

Adjacency Matrix

Overall Space! @ (R A E [8) o(|v| + |E|) o(|V]2)
vertices()! @/l 0(1)* 0(1)*

edges() o(1) O(|E]) o(|Vv]2)

incidentEdges(v) O(|E|) O(1l)* o(|Vv])
areAdjacent (vi, v2) 0(1) 0(1) 0(1)

insertVertex(v) 0(1) 0(1) o(|Vv])
insertEdge(vi, v2) 0(1) 0(1) 0(1)

removeVertex(v) O(|E]|) o(|Vv]) o(|v])
removeEdge(vi, v2) 0(1) 0(1) 0(1)

1|n all approaches, we maintain *In place

an additional list or set of vertices

41

(return pointer)

Big-O Performance (Edge Set)

vertices() O(1) Return set of vertices

edges() O(1) Return set of edges

terate through each edge and check

incidentEdges(v) O (| E |) if it contains vertex v

areAdjacent(vi,v2) O(1) Check if (v1,v2) exists in the set
insertVertex(v) 0(1) Add vertex v to the vertex list
insertEdge(vi,v2) O(1) Add element (v1,v2) to the set
removeVertex(v) 0(| E |) lterate through each edge and

remove It If it has vertex v

removeEdge(vi,v2) O(1) Remove edge (v1,V2)

2P

Big-O Performance (Adjacency Set)

vertices() O(1) Return the set of vertices

Concatenate each vertex with its

edges() il | 4 |) subsequent vertices
incidentEdges(v) O(1l) Return v's edge set
areAdjacent(vi,v2) O(1) Check if vz is in v1's set
insertVertex(v) O(1) Add vertex v to the vertex set
insertEdge(vi,v2) O(1l) Add v1 to v2's edge set and vice versa
removeVertex(v) 0 | v |) Remove v from each of its adjacent

vertices' sets and remove v's set

removeEdge(vi,v2) O(1) Remove v1 from v32's set and vice versa

=03

Big-O Performance (Adjacency Matrix)

vertices() O(1) Return the set of vertices
edges() o(|V]2) [terate through the entire matrix
R [terate through v's row or column to
InCIdentEdges(v) O (| \Y |) check for trues
Note: row/col are the same in an undirected graph.
areAdjacent(vi,v2) O(1) Check index (vi,v2) for a true
' *
insertVertex(v) 0(|V|) % Add vertex v to thg matrix (* O (1)
amortized)
insertEdge(vi,v2) O(1) Set index (vi,v2) to true
Set V's row and column to false and
removeVertex(y) o | 1 |) remove Vv from the vertex list
removeEdge(vi,v2) O(1l) Set index (vi,v2) to false

44

B ana Drl

» Remember BFT and DFT on trees!?

» We can also do them on graphs

» atree is just a special kind of graph

» often used to find certain values in graphs

D

BFT/DFT on Graphs

o Activity #2

7 172472

BFT/DFT on Graphs

o Activity #2

7 172472

BFT/DFT on Graphs

Activity #2

b

Breadth First Traversal: Tree vs. Graph

function graphBFT(start):
//Input: start vertex

//Output: Nothing

function treeBFT(root):
//Input: Root node of tree

//Output: Nothing

QO = new Queue() QO = new Queue()
Q.enqueue(root) start.visited = true
while Q is not empty: Q.enqueue(start)
node = Q.dequeue() while Q is not empty:
doSomething(node) node = Q.dequeue()

doSomething(node)
for neighbor in adj nodes:
if not neighbor.visited:

neighbor.visited = true
Q.enqueue (neighbor)

enqgueue node'’s children

doSomething() could
print, add to list, decorate

node etc...

Mark nodes as visited otherwise you will loop

forever!

25

Depth First [raversal

» To do DFI on graph, replace queue with stack

» Can also be done recursively

function recursiveDFT (node):
// Input: start node
// Output: Nothing
node.visited = true
for neighbor in node’s adjacent vertices:
if not neighbor.visited:
recursiveDFT (neighbor)

50

Applications: Flight Paths Exist

» Given undirected graph with airports & flights

» IS It possible to fly from one airport to another?

» Strategy
» use breadth first search starting at first node

» and determine If ending airport Is ever visited

(N

Applications: Flight Paths Exist

R creTtlight from SFO to PVIDY

Applications: Flight Paths Exist

R creTtlight from SFO to PVIDY

Applications: Flight Paths Exist

R creTtlight from SFO to PVIDY

Applications: Flight Paths Exist

R creTtlight from SFO to PVIDY
5r0 | <D —
HNL
©—a»
<

» Yes! but how do we do it with code!

55

Flight Paths Exist Pseudo-Code

function pathExists(from, to):
//Input: from: vertex, to: vertex
//Output: true if path exists, false otherwise

Q = new Queue()
from.visited = true
Q.enqueue (from)
while Q is not empty:
airport = Q.dequeue()
if airport == to:
return true
for neighbor in airport’s adjacent nodes:
if not neighbor.visited:
neighbor.visited = true
Q.enqueue (neighbor)
return false

56

Applications:

-light Layovers

» Given undirected graph with airports & flights

» decorate vertices w/ least number of
stops from a given source

» If no way to get to a an airport decorate w/ 00

» Strategy

» decorate each node w/ initial 'stop value’ of 00

» use breadth first search to decorate each node...

» ...W/ ‘stop value' of one greater than its previous value

o7

Flight Layovers Pseudo-Code

function numStops (G, source):

//Input: G: graph, source: vertex

//Output: Nothing

//Purpose: decorate each vertex with the lowest number of

// layovers from source.

for every node in G:
node.stops = infinity

QO = new Queue()
source.stops = 0
source.visited = true
Q.enqueue(source)
while Q is not empty:
airport = Q.dequeue()
for neighbor in airport’s adjacent nodes:
if not neighbor.visited:
neighbor.visited = true
neighbor.stops = airport.stops + 1
Q.enqueue (neighbor)

58

~light Layovers

Pseudo-Code

Flight Layovers Pseudo-Code

60

