
Graphs
CS16: Introduction to Data Structures & Algorithms

Spring 2020

Outline
‣ What is a Graph
‣ Terminology
‣ Properties
‣ Graph Types
‣ Representations
‣ Performance
‣ BFS/DFS
‣ Applications

2

What is a Graph
‣ A graph is defined by
‣ a set of vertices (or vertexes, or nodes) V

‣ a set of edges E

‣ Vertices and edges can both store data

Example: Social Graph

Kieran Healy, “Using metadata to find Paul Revere”
https://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/

2

1
2

3

2

2

4

3

2

1

Terminology
‣ Endpoints or end vertices of an edge

‣ U and V are endpoints of edge a

‣ Incident edges of a vertex
‣ a, b, d are incident to V

‣ Adjacent vertices
‣ U and V are adjacent

‣ Degree of a vertex
‣ X has degree of 5

‣ Parallel (multiple) edges
‣ h, i are parallel edges

‣ Self-loops
‣ j is a self-looped edge

5

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

Terminology
‣ A path is a sequence of alternating

vertices and edges
‣ begins and ends with a vertex
‣ each edge is preceded and followed by

its endpoints

‣ Simple path
‣ path such that all its vertices and edges

are visited at most once

‣ Examples
‣ P1 = V →b X →h Z is a simple path

‣ P2= U →c W →e X →g Y →f W →d V
is not a simple path, but is still a path

6

P1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

Applications
‣ Flight networks
‣ Road networks & GPS
‣ The Web

‣ pages are vertices
‣ links are edges

‣ The Internet
‣ routers and devices are vertices
‣ network connections are edges

‣ Facebook
‣ profiles are vertices
‣ friendships are edges

7

Graph Properties
‣ A graph G’=(V’,E’) is a subgraph of G=(V,E)
‣ if V’ ⊆ V and E’ ⊆ E

‣ A graph is connected if
‣ there exists path from each vertex

to every other vertex

‣ A path is a cycle if
‣ it starts and ends at the same vertex

‣ A graph is acyclic
‣ if it has no cycles

8

A Subgraph

2

1
2

3

2

2

4

3

2

1

Connected?

2

1
2

3

2

2

4

3

2

1

Connected?

1
2

3

2

4

1
2 connected
components

Cycles

2

1
2

3

2

2

4

3

2

1

Acyclic?

2

1
2

3

2

2

4

3

2

1

Graph Properties
‣ A spanning tree of G is a subgraph with
‣ all of G’ s vertices in a single tree
‣ and enough edges to connect each vertex w/o cycles

14

Spanning tree

2

1

2

2

4

3

2
3

2

1

Graph Properties
‣ A spanning forest is
‣ a subgraph that consists of a spanning tree in each

connected component of graph

‣ Spanning forests never contain cycles
‣ this might not be the “best” or shortest path to each

node

16

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

Spanning forest

1

2

4

2

Graph Properties
‣ G is a tree if and only if it satisfies any of these

conditions
‣ G has |V|-1 edges and no cycles

‣ G has |V|-1 edges and is connected

‣ G is connected, but removing any edge disconnects it

‣ G is acyclic, but adding any edges creates a cycle
‣ Exactly one simple path connects each pair of

vertices in G

18

Graph Proof 1
‣ Prove that
‣ the sum of the degrees of all vertices of some graph G…

‣ …is twice the number of edges of G

‣ Let V = {v1,v2,…,vp}, where p is number of vertices
‣ The total sum of degrees D is such that

‣ D = deg(v1) + deg(v2) + … + deg(vp)

‣ But each edge is counted twice in D
‣ one for each of the two vertices incident to the edge

‣ So D = 2|E|, where |E| is the number of edges.
19

Graph Proof 2
‣ Prove using induction that if G is connected then

‣ |E| ≥ |V|–1, for all |V|≥1

‣ Base case |V|=1
‣ If graph has one vertex then it will have 0 edges
‣ so since |E|=0 and |V|-1=1-1=0, we have |E| ≥|V|-1

‣ Inductive hypothesis
‣ If graph has |V|=k vertices then |E|≥k–1

‣ Inductive step
‣ Let G be any connected graph with |V|=k+1 vertices

‣ We must show that |E|≥k
20

Graph Proof 2
‣ Inductive step

‣ Let G be any connected graph with |V|=k+1 vertices

‣ We must show that |E| ≥ k

‣ Let u be the vertex of minimum degree in G
‣ deg(u) ≥ 1 since G is connected

‣ If deg(u) = 1
‣ Let G’ be G without u and its 1 incident edge

‣ G’ has k vertices because we removed 1 vertex from G

‣ G’ is still connected because we only removed a leaf

‣ So by inductive hypothesis, G’ has at least k–1 edges

‣ which means that G has at least k edges

21

Graph Proof 2
‣ If deg(u) ≥ 2
‣ Every vertex has at least two incident edges
‣ So the total degree D of the graph is D ≥ 2(k+1)
‣ But we know from the last proof that D=2|E|

‣ so 2|E| ≥ 2(k+1) ⟹ |E| ≥ k+1 ⟹ |E|≥k

‣ We showed it is true for |V|=1 (base case)…
‣ …and for |V|=k+1 assuming it is true for |V|=k…

‣ …so it is true for all |V|≥1
22

Undirected graph

2

1
2

3

2

2

4

3

2

1

Directed graph

The British
are coming!

Cycle?

Cycle?

Edge Types
‣ Undirected edge
‣ unordered pair of vertices (L,R)

‣ Directed edge
‣ ordered pair of vertices (L,R)
‣ first vertex L is the origin
‣ second vertex R is the destination

25

Directed Acyclic Graph (DAG)

26

CS32

CS16

CS18

CS15

CS17

CS19

CS123 CS224

CS141 CS242

CS125
CS128

CS22

Acyclic = without cycles

means ‘is a prerequisite for’

We’ll talk much
more about DAGs
in future lectures…

Graph Representations
‣ Vertices usually stored in a List or Set
‣ 3 common ways of representing which vertices

are adjacent
‣ Edge list (or set)
‣ Adjacency lists (or sets)
‣ Adjacency matrix

27

Edge List
‣ Represents adjacencies as a list of pairs
‣ Each element of list is a single edge (a,b)
‣ Since the order of list doesn’t matter
‣ can use hashset to improve runtime of adjacency testing

28

[(1,1),(1,2),(1,5),(2,3),(2,5),(3,4),(4,5),(4,6)]

Edge Set
‣ Store all the edges in a Hashset

29

(1,1)(3,4) (1,5)

(4,5)

(2,5)

(4,6) (1,2)

(2,3)

Adjacency Lists
‣ Each vertex has an associated list with its neighbors
‣ Since the order of elements in lists doesn’t matter
‣ lists can be hashsets instead

30

1

2

3

4

5

6

1 2 5

1 3 5
2 4

3 5 6

1 2 4

4

Adjacency Set
‣ Each vertex associated Hashset of its neighbors

31

1

2

3

4

5

6

Hashset of {1,2,5}
Hashset of {1,3,5}

Hashset of {2,4}
Hashset of {3,5,6}
Hashset of {1,2,4}
Hashset of {4}

Adjacency Matrix
‣ Matrix with n rows and n columns
‣ n is number of vertices

‣ If u is adjacent to v then M[u,v]=T

‣ If u is not adjacent to v then M[u,v]=F

‣ If graph is undirected then M[u,v]=M[v,u]

32

Adjacency Matrix

33

1 2 3 4 5 6

1 T T F F T F

2 T F T F T F

3 F T F T F F

4 F F T F T T

5 T T F T F F

6 F F F T F F

Adjacency Matrix
‣ Initialize matrix to predicted size of graph
‣ we can always expand later

‣ When vertex is added to graph
‣ reserve a row and column of matrix for that vertex

‣ When vertex is removed
‣ set its entire row and column to false

‣ Since we can’t remove rows/columns from arrays
‣ keep separate collection of vertices that are actually present

in graph
34

Graph ADT
‣ Vertices and edges can store values

‣ Ex: edge weights

‣ Accessor methods

‣ vertices()

‣ edges()

‣ incidentEdges(vertex)

‣ areAdjacent(v1, v2)

‣ endVertices(edge)

‣ opposite(vertex, edge)

‣ Update methods
‣ insertVertex(value)
‣ insertEdge(v1, v2)

‣ sometimes this function also
takes a value
so insertEdge(v1, v2,val)

‣ removeVertex(vertex)
‣ removeEdge(edge)

Big-O Performance

36
3 minActivity #1

Big-O Performance

37
3 minActivity #1

Big-O Performance

38
2 minActivity #1

Big-O Performance

39
1 minActivity #1

Big-O Performance

40
0 minActivity #1

Big-O Performance

41

Edge Set Adjacency Sets Adjacency Matrix

Overall Space1 O(|V| + |E|) O(|V| + |E|) O(|V|2)

vertices()1 O(1)* O(1)* O(1)*

edges() O(1)* O(|E|) O(|V|2)

incidentEdges(v) O(|E|) O(1)* O(|V|)

areAdjacent (v1, v2) O(1) O(1) O(1)

insertVertex(v) O(1) O(1) O(|V|)

insertEdge(v1, v2) O(1) O(1) O(1)

removeVertex(v) O(|E|) O(|V|) O(|V|)

removeEdge(v1, v2) O(1) O(1) O(1)

* in place
(return pointer)

1 In all approaches, we maintain
an additional list or set of vertices

Big-O Performance (Edge Set)

42

Operation Runtime Explanation
vertices() O(1) Return set of vertices
edges() O(1) Return set of edges

incidentEdges(v) O(|E|) Iterate through each edge and check
if it contains vertex v

areAdjacent(v1,v2) O(1) Check if (v1,v2) exists in the set

insertVertex(v) O(1) Add vertex v to the vertex list
insertEdge(v1,v2) O(1) Add element (v1,v2) to the set

removeVertex(v) O(|E|) Iterate through each edge and
remove it if it has vertex v

removeEdge(v1,v2) O(1) Remove edge (v1,v2)

Big-O Performance (Adjacency Set)

43

Operation Runtime Explanation
vertices() O(1) Return the set of vertices

edges() O(|E|) Concatenate each vertex with its
subsequent vertices

incidentEdges(v) O(1) Return v’s edge set
areAdjacent(v1,v2) O(1) Check if v2 is in v1’s set

insertVertex(v) O(1) Add vertex v to the vertex set

insertEdge(v1,v2) O(1) Add v1 to v2’s edge set and vice versa

removeVertex(v) O(|V|) Remove v from each of its adjacent
vertices’ sets and remove v’s set

removeEdge(v1,v2) O(1) Remove v1 from v2’s set and vice versa

Big-O Performance (Adjacency Matrix)

44

Operation Runtime Explanation
vertices() O(1) Return the set of vertices
edges() O(|V|2) Iterate through the entire matrix

incidentEdges(v) O(|V|)
Iterate through v’s row or column to

check for trues
Note: row/col are the same in an undirected graph.

areAdjacent(v1,v2) O(1) Check index (v1,v2) for a true

insertVertex(v) O(|V|)* Add vertex v to the matrix (* O(1)
amortized)

insertEdge(v1,v2) O(1) Set index (v1,v2) to true

removeVertex(v) O(|V|) Set v’s row and column to false and
remove v from the vertex list

removeEdge(v1,v2) O(1) Set index (v1,v2) to false

BFT and DFT
‣ Remember BFT and DFT on trees?
‣ We can also do them on graphs
‣ a tree is just a special kind of graph
‣ often used to find certain values in graphs

45

BFT/DFT on Graphs

46
1 minActivity #2

BFT/DFT on Graphs

47
1 minActivity #2

BFT/DFT on Graphs

48
0 minActivity #2

Breadth First Traversal: Tree vs. Graph

49

function treeBFT(root):
//Input: Root node of tree
//Output: Nothing
Q = new Queue()
Q.enqueue(root)
while Q is not empty:

node = Q.dequeue()
doSomething(node)
enqueue node’s children

function graphBFT(start):
//Input: start vertex
//Output: Nothing
Q = new Queue()
start.visited = true
Q.enqueue(start)
while Q is not empty:

node = Q.dequeue()
doSomething(node)
for neighbor in adj nodes:

if not neighbor.visited:
neighbor.visited = true
Q.enqueue(neighbor)

doSomething() could
print, add to list, decorate
node etc…

Mark nodes as visited otherwise you will loop
forever!

Depth First Traversal
‣ To do DFT on graph, replace queue with stack
‣ Can also be done recursively

50

function recursiveDFT(node):
// Input: start node
// Output: Nothing

 node.visited = true
 for neighbor in node’s adjacent vertices:

if not neighbor.visited:
recursiveDFT(neighbor)

Applications: Flight Paths Exist
‣ Given undirected graph with airports & flights
‣ is it possible to fly from one airport to another?

‣ Strategy
‣ use breadth first search starting at first node
‣ and determine if ending airport is ever visited

51

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

52

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

53

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

54

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

‣ Yes! but how do we do it with code?

55

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Flight Paths Exist Pseudo-Code

56

function pathExists(from, to):
//Input: from: vertex, to: vertex
//Output: true if path exists, false otherwise
Q = new Queue()
from.visited = true
Q.enqueue(from)
while Q is not empty:

airport = Q.dequeue()
if airport == to:

return true
for neighbor in airport’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
Q.enqueue(neighbor)

return false

Applications: Flight Layovers
‣ Given undirected graph with airports & flights
‣ decorate vertices w/ least number of

stops from a given source

‣ if no way to get to a an airport decorate w/ ∞
‣ Strategy
‣ decorate each node w/ initial ‘stop value’ of ∞
‣ use breadth first search to decorate each node…
‣ …w/ ‘stop value’ of one greater than its previous value

57

Flight Layovers Pseudo-Code

58

function numStops(G, source):
//Input: G: graph, source: vertex

 //Output: Nothing
 //Purpose: decorate each vertex with the lowest number of
 // layovers from source.

 for every node in G:

node.stops = infinity

 Q = new Queue()
 source.stops = 0
 source.visited = true
 Q.enqueue(source)
 while Q is not empty:

airport = Q.dequeue()
for neighbor in airport’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
neighbor.stops = airport.stops + 1
Q.enqueue(neighbor)

Flight Layovers Pseudo-Code

59

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

∞ ∞

∞

∞

∞

∞

∞

∞

∞

∞

Flight Layovers Pseudo-Code

60

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

∞ ∞

∞

∞

∞

∞

∞

∞

∞

∞
0

✓

HNL

1

✓

LAX

2 ✓

SFO

2

✓

DFW

2✓

ORD

3 ✓

PVD

3
✓

LGA

3

✓

MIA

