Dijkstra's Algorithm

- The algorithm is as follows:
- Decorate source with distance 0 \& all other nodes with $\boldsymbol{\infty}$
- Add all nodes to priority queue w/ distance as priority
- While the priority queue isn't empty
- Remove node from queue with minimal priority
- Update distances of the removed node's neighbors if distances decreased
- When algorithm terminates, every node is decorated with minimal cost from source

Dijkstra Pseudo-Code

```
function dijkstra(G, s):
    // Input: graph G with vertices V, and source s
    // Output: Nothing
    // Purpose: Decorate nodes with shortest distance from s
    for v in V:
        v.dist = infinity // Initialize distance decorations
        v.prev = null // Initialize previous pointers to null
    s.dist = 0 // Set distance to start to 0
    PQ = PriorityQueue(V) // Use v.dist as priorities
    while PQ not empty:
    u = PQ.removeMin()
    for all edges (u, v): //each edge coming out of u
        if u.dist + cost(u, v) < v.dist: // cost() is weight
        v.dist = u.dist + cost(u,v) // Replace as necessary
        v.prev = u // Maintain pointers for path
        PQ.decreaseKey(v, v.dist)
```


Dijkstra Runtime w/ Heap

- If PQ implemented with Heap
- insert() is $O(\log |V|)$
- you may need to upheap
- removeMin() is $O(\log |\mathrm{~V}|)$
- you may need to downheap
- decreaseKey () is $\mathrm{O}(\log |\mathrm{V}|)$
- assume we have dictionary that maps vertex to heap entry in $\mathrm{O}(\log |\mathrm{V}|)$ time (so no need to scan heap to find entry)
- you may need to upheap after decreasing the key

Dijkstra Runtime w/ Heap

```
function dijkstra(G, s):
    for v in V:
        v.dist = infinity
        v.prev = null
s.dist = 0
PQ = PriorityQueue(V)
        O(|v|log|v|)
    while PQ not empty: ఒ
    u = PQ.removeMin() & O(log|V|)
        for all edges (u, v): « % O(|E|)
        if v.dist > u.dist + cost(u, v): total
        v.dist = u.dist + cost(u,v)
        v.prev = u
            PQ.decreaseKey(v, v.dist)

\section*{Dijkstra Runtime w/ Heap}
- If PQ implemented with Heap
\[
\begin{aligned}
& O(|V|+|V| \log |V|+|V| \log |V|+|E| \log |V|) \\
&=O(|V|+|V| \log |V|+|E| \log |V|) \\
&=O((|V|+|E|) \cdot \log |V|)
\end{aligned}
\]
- Note
- though the \(\mathrm{O}(|\mathrm{E}|)\) loop is nested in the \(\mathrm{O}(|\mathrm{V}|)\) loop
- we visit each edge at most twice rather than \(|\mathrm{V}|\) times
- That's why while loop is \(O((V \log |V|)+(|E| \log |V|))\)

\section*{Dijkstra isn' t perfect!}
- We can find shortest path on weighted graph in
- O( (|V|+|E|)×log|V|)
- or can we...
- Dijkstra fails with negative edge weights

- Returns [A, C, D] when it should return [A, B, C , D]

\section*{Negative Edge Weights}
- Negative edge weights are problem for Dijkstra
- But negative cycles are even worse!
- because there is no true shortest path!


\section*{Bellman-Ford Algorithm}
- Algorithm that handles graphs w/ neg. edge weights
- Similar to Dijkstra’s but more robust
- Returns same output as Dijkstra's for any graph w/ only positive edge weights (but runs slower)
- Returns correct shortest paths for graphs w/ neg. edge weights
- Detects and reports negative cycles
- How: not greedy!

\section*{Minimum Spanning}

\section*{Trees: Prim-Jarnik}

CSI 6: Introduction to Data Structures \& Algorithms Summer 2021

\section*{Spanning Trees}
- A spanning tree of a graph is
- edge subset forming a tree that spans every vertex


Minimum Spanning Trees
- A minimum spanning tree (MST) is
- spanning tree with minimum total edge weight


\section*{Applications}
- Networks
- electric
- computer
- water
- transportation
- Computer vision
- Facial recognition
- Handwriting recognition
- Image segmentation
- Low-density parity check codes (LDPC)

\section*{Minimum Spanning Tree Algos}
- Prim-Jarnik Algorithm

\author{
PRÁCE \\ MORAVSKÉ PŘíRODOVĚDECKÉ SPOLEČNOSTI \\ svazek vi., SPIS 4. \\ 1930 \\ SIGNATURA: F 50 \\ BRNO, ČESKOSLOVENSKO.
}

ACTA SOCIETATIS SCIENTIARUM NATUR
tomus vi., FASCICULUS 4; SIGNATURA: F50: BRNC

VOJTĚCH JARNIK:

problému mini
pisu panu (). BORU゚V1


Shortest Connection Networks
And Some Generalizations

\author{
By R. C. PRIM
}
(Manuscript received May 8, 1957)
The basic problem considered is that of interconnecting a given set of terminals with a shortest possible network of direct links. Simple and practical procedures are given for solving this problem both graphically and computationally. It develops that these procedures also provide solutions for a much broader class of problems, containing other examples of practical interest.

\section*{Minimum Spanning Tree Algos}

\section*{- Kruskal's algorithm (I956)}

\section*{ON THE SHORTEST SPANNING SUBTREE OF A GRAPH and the traveling salesman problem}

\section*{JOSEPH B. KRUSKAL, JR.}

Several years ago a typewritten translation (of obscure origin) of [1] raised some interest. This paper is devoted to the following theorem: If a (finite) connected graph has a positive real number attached to each edge (the length of the edge), and if these lengths are all distinct, then among the spanning \({ }^{1}\) trees (German: Gerüst)
 of the graph there is only one, the sum of whose edges is a minimum; that is, the shortest spanning tree of the graph is unique. (Actually in [1] this theorem is stated and proved in terms of the "matrix of lengths" of the graph, that is, the matrix \(\left\|a_{i j}\right\|\) where \(a_{i j}\) is the length of the edge connecting vertices \(i\) and \(j\). Of course, it is assumed that \(a_{i j}=a_{j i}\) and that \(a_{i i}=0\) for all \(i\) and \(j\).)

The proof in [1] is based on a not unreasonable method of constructing a spanning subtree of minimum length. It is in this construction that the interest largely lies, for it is a solution to a problem (Problem 1 below) which on the surface is closely related to one version (Problem 2 below) of the well-known traveling salesman problem.

\section*{Minimum Spanning Tree Algos}

\section*{- Karger-Klein-Tarjan (1995)}

\author{
A Randomized Linear-Time Algorithm to Find Minimum Spanning Trees
}

\author{
DAVID R. KARGER
}

Stanford University, Stanford, California
PHILIP N. KLEIN
Brown University, Providence, Rhode Island
AND

\section*{ROBERT E. TARJAN}

Prnceton University and NEC Research Institute, Princeton, New Jersey

Abstract. We present a randomized linear-time algorithm to find a minimum spanning tree in a connected graph with edge weights. The algorithm uses random sampling in combination with a recently discovered linear-time algorithm for verifying a minimum spanning tree. Our computational model is a unit-cost random-access machine with the restriction that the only operations allowed on edge weights are binary comparisons.
Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems-computations on discrete structures; G.2.2 [Discrete Mathematics]: Graph Theory-graph algorithms, network problems, trees: G. 3 [Probability and Statistics]: probabilistic algorithms (including Monte Carlo); I.5.3 [Pattern Recognition]: Clustering General Terms: Algorithms
Additional Key Words and Phrases: Matroid, minimum spanning tree, network, randomized algorithm


\section*{Prim-Jarnik Algorithm}
- Add a random node to MST
- At each step
- Find the unconnected node that can be connected with the lowest-weight edge
- Add that node and edge to the MST
- Stop when all nodes added to MST

\section*{Example}


\section*{Example}


\section*{Example}


\section*{Example}


\section*{Example}


\section*{Example}


\section*{Example}


\section*{Prim-Jarnik Algorithm}
- How to determine which node to add
- Could consider all edges from MST each time
- Sounds slow!
- Instead: use a data structure that contains all unconnected nodes and lets us access the node with the smallest weight
- Sounds familiar!
- Think Dijkstra...

\section*{Prim-Jarnik Algorithm}
- Keep all unconnected nodes in priority queue
- Priority of a node is the minimum weight of an edge connecting that node to the MST
- When adding a new node, update its neighbors' weights in PQ if necessary
- At start, set initial node's priority to 0 and all others to \(\infty\)
- Use previous-pointers to determine which edge to add

\section*{Example}

\[
P Q=[(0, A),(\infty, B),(\infty, C),(\infty, D),(\infty, E),(\infty, F)]
\]

\section*{Example}

\[
P Q=[(4, B),(5, D),(\infty, C),(\infty, E),(\infty, F)]
\]

\section*{Example}


\section*{Example}

\[
P Q=[(2, E),(4, D),(8, F)]
\]

\section*{Example}


Dequeue from PQ
and update neighbors
\[
P Q=[(4, D),(4, F)]
\]

\section*{Example}
\[
P Q=[(3, F)]
\]

Dequeue from PQ and update neighbors

\section*{Example}


\section*{Example}


\section*{Pseudo-code}
```

function prim(G):
// Input: weighted, undirected graph G with vertices V
// Output: list of edges in MST
for all v in V:
v.cost = \infty
v.prev = null
s = a random v in V // pick a random source s
s.cost = 0
MST = []
PQ = PriorityQueue(V) // priorities will be v.cost values
while PQ is not empty:
v = PQ.removeMin()
if v.prev != null:
MST.append((v, v.prev))
for all incident edges (v,u) of v such that }u\mathrm{ is in PQ:
if u.cost > (v,u).weight:
u.cost = (v,u).weight
u.prev = v
PQ.decreaseKey(u, u.cost)
return MST

```

\section*{Runtime Analysis}
- Decorating nodes with distance and previous pointers is \(\mathrm{O}(|\mathrm{V}|)\)
- Putting nodes in PQ is \(\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|)\) (really \(\mathrm{O}(|\mathrm{V}|)\) since \(\infty\) priorities)
- While loop runs \(|\mathrm{V}|\) times
- removing vertex from PQ is \(\mathrm{O}(\log |\mathrm{V}|)\)
- So O(|V|log|v|)
- For loop (in while loop) runs \(|\mathrm{E}|\) times in total
- Replacing vertex's key in the PQ is \(\log |\mathrm{V}|\)
- So O(|E|log|V|)
- Overall runtime
\(\cdot O(|\mathrm{~V}|+|\mathrm{V}| \log |\mathrm{V}|+|\mathrm{V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)\)
- \(=O((|\mathrm{E}|+|\mathrm{V}|) \log |\mathrm{V}|)\)

\section*{Proof of Correctness}
- Common way of proving correctness of greedy algos
- show that algorithm is always correct at every step
- Best way to do this is by induction
- tricky part is coming up with the right invariant

\section*{Inductive invariant for Prim}
- Want an invariant \(P(n)\), where \(n\) is number of edges added so far
- Need to have:
- P(0) [base case]
- \(\mathrm{P}(\mathrm{n})\) implies \(\mathrm{P}(\mathrm{n}+1)\) [inductive case]
- P(size of MST) implies correctness

\section*{Inductive invariant for Prim}
- Want an invariant \(P(n)\), where \(n\) is number of edges added so far
- Need to have:
- P(0) [base case]
- \(\mathrm{P}(\mathrm{n})\) implies \(\mathrm{P}(\mathrm{n}+1)\) [inductive case]
- P(size of MST) implies correctness
- \(P(n)=\) first \(n\) edges added by Prim are a subtree of some MST

\section*{Graph Cuts}
- A cut is any partition of the vertices into two groups

- Here G is partitioned in 2
- with edges b and a joining the partitions

\section*{Proof of Correctness}
- \(P(n)\)
- first n edges added by Prim are a subtree of some MST
- Base case when n=0
- no edges have been added yet so \(\mathrm{P}(0)\) is trivially true
- Inductive Hypothesis
- first \(k\) edges added by Prim form a tree \(T\) which is subtree of some MST M

IH


\section*{Proof of Correctness}
- Inductive Step
- Let \(\mathbf{e}\) be the \((\mathrm{k}+1)\) th edge that is added
- e will connect T (green nodes) to an unvisited node (one of blue nodes)
- We need to show that adding e to \(T\)
- forms a subtree of some MST M \({ }^{\prime}\)
- (which may or may not be the same MST as M)


\section*{Proof of Correctness}
- Two cases
- \(e\) is in original MST M
- e is not in M
- Case 1: e is in M
- there exists an MST that contains first k+1 edges
- So \(P(k+1)\) is true!


\section*{Proof of Correctness}
- Case \(2: \mathbf{e}\) is not in M
- if we add \(\mathrm{e}=(\mathrm{u}, \mathrm{v})\) to M then we get a cycle
- why? since M is span. tree there must be path from u to v w/o e
- so there must be another edge \(e^{\prime}\) that connects \(T\) to unvisited nodes

- We know e.weight \(\leq e^{\prime}\). weight because Prim chose e first

\section*{Proof of Correctness}
- So if we add e to M and remove \(\mathrm{e}^{\prime}\)
- we get a new MST M' that is no larger than M and contains \(T\) \& \(e\)

- \(P(k+1)\) is true
- because \(M^{\prime}\) is an MST that contains the first \(k+1\) edges added by Prim's

\section*{Proof of Correctness}
- Since we have shown
- \(P(0)\) is true
- \(P(k+1)\) is true assuming \(P(k)\) is true (for both cases)
- The first n edges added by Prim form a subtree of some MST

\section*{Readings}
- Dasgupta Section 5.1
- Explanations of MSTs
- algorithms discussed in this lecture and next lecture```

