Dijkstra’s Algorithm

» [he algorithm is as follows:

» Decorate source with distance 0 & all other nodes with oo
» Add all nodes to priority queue w/ distance as priority

» While the priority queue isn't empty
» Remove node from queue with minimal priority

» Update distances of the removed node’s neighbors If distances
decreased

» VWhen algorithm terminates, every node Is decorated

with minimal cost from source ey

- Finishing Dijkstra’s
- Minimum spanning trees

Dijkstra Pseudo-Code

function dijkstra(G, s):

// Input: graph G with vertices V, and source s

// Output: Nothing

// Purpose: Decorate nodes with shortest distance from s

for v in V:
v.dist = infinity // Initialize distance decorations
v.prev = null // Initialize previous pointers to null

s.dist = // Set distance to start to 0

PQ = PriorityQueue (V) // Use v.dist as priorities
while PQ not empty:
u = PQ.removeMin/()
for all edges (u, v): //each edge coming out of u
if u.dist + cost(u, v) < v.dist: // cost() is weight

v.dist = u.dist + cost(u,Vv) // Replace as necessary

V.prev = u // Maintain pointers for path
PQ.decreaseKey (v, v.dist)

Dijkstra Runtime w/ Heap

» T PQ implemented with Heap
» insert() isO(log|V]|)
» you may need to upheap
» removeMin() isO(log|V]|)
» you may need to downheap

» decreaseKey () isO(log|V])

» assume we have dictionary that maps vertex to heap entry In
O(log|V|) time (so no need to scan heap to find entry)

» You may need to upheap after decreasing the key

3

Dijkstra Runtime w/ Heap

function dijkstra(G, s):

o(|v])

for v in V: <«
v.dist = infinity
v.prev = null
s.dist = 0

PQ = PriorityQueue(V) <

o(|V|log|V])

while PQ not empty: < O (‘V‘)
u = PQ.removeMin() o(log‘v‘)
for all edges (u, V): 0(‘E‘)
if v.dist > u.dist + cost(u, v): e sl
v.dist = u.dist + cost(u,Vv)
vV.prev = u
PQ.decreaseKey (v, v.dist"t O(log ‘ V‘)

Dijkstra Runtime w/ Heap

» T PQ implemented with Heap

O(|V]+|V|log|V|+|V]log |V| + |E|log |V])
— O(|V]| + [V |log |V = (2 Hosaia

= 0((v1+121) 10g V1)

» Note

» though the O(|E|) loop is nested inthe O(| V]) loop
» we visit each edge at most twice rather than |V | times

» [hat's why while loop Is O((Vlog\V\) F (\E\IOgIV!)>

5

Dijkstra 1sn' t perfect!

» We can find shortest path on weighted graph in
» O((|V[+[E[)*xlog|V])
» O Can we...

» Dijkstra fails with negative edge weights

Start
End

8

» Returns [A,C,D] when it should return [A,B,C,D]

6

Negative tage Weights

» Negative edge welights are problem for Dijkstra
» But negative cycles are even worse!

» because there Is no true shortest path!

Start T
A 15 il

@ -

3

Bellman-rord Algorithm

» Algorithm that handles graphs w/ neg. edge
welghts

» Similar to Dijkstra’'s but more robust

» Returns same output as Dijkstra’s for any graph w/
only positive edge weights (but runs slower)

» Returns correct shortest paths for graphs w/ neg. edge
welghts

» Detects and reports negative cycles

» How: not greedy!

Minimum Spanning
|rees:
Prim-jarnik

CS16: Introduction to Data Structures & Algorithms
Summer 202 |

Spanning Irees

» A spanning tree of a graph Is

» edge subset forming a tree that spans every vertex

Minimum Spanning [rees

» A minimum spanning tree (MST) Is

» spanning tree with minimum total edge weight

Applications

» Networks
» electric ~ PRAC]
MORAVSKE PRIRODOVEDE!
SVAZEK IIL., SPIS 3. 1926
> computer BRNO, CESKOSLOV
ACTA SOCIETATIS SCIENTIARUM N
» water TOMUS I1I., FASCICULUS 3.; SIGNATURA : F 23

» transportation

4 Computer vision Dr. OTAKAR BORUVKA:
» Facial recognition

o &) O jistém problému minimalnim.
» Handwriting recognition

» Image segmentation

» Low-density parity check codes (LDPC)

17

Minimum Spanning Tree Algos

» Prim-Jarnik Algorithm

- PRACE
MORAVSKE PRIRODOVEDECKE SPOLECNOSTI
SVAZEK VI., SPIS 4. 1930 SIGNATURA: F 50

BRNO, CESKOSLOVENSKO.

ACTA SOCIETATIS SCIENTIARUM NATUR
TOMUS VI., FASCICULUS 4; SIGNATURA: F50: BRNC

VOJTECH JARNIK: Shortest Connection Networks

problému mini And Some Generalizations

[Hpisu panu 0. BORUVI By R. C. PRIM

(Manuseript received May 8, 1957)

The basic problem considered is that of interconnecting a given set of
terminals with a shortest possible network of direct links. Simple and prac-
tical procedures are given for solving this problem both graphically and
computationally. It develops that these procedures also provde solutions
for a much broader class of problems, containing other examples of practical

anterest.

Minimum Spanning Tree Algos

» Kruskal's algorithm (1956)

ON THE SHORTEST SPANNING SUBTREE OF A GRAPH
AND THE TRAVELING SALESMAN PROBLEM

JOSEPH B. KRUSKAL, JR.

Several years ago a typewritten translation (of obscure origin) of
[1] raised some interest. This paper is devoted to the following
theorem: If a (finite) connected graph has a positive real number
attached to each edge (the length of the edge), and if these lengths
are all distinct, then among the spanning! trees (German: Geriist)
of the graph there is only one, the sum of whose edges is a mini-
mum; that is, the shortest spanning tree of the graph is unique.
(Actually in [1] this theorem is stated and proved in terms of the
“matrix of lengths” of the graph, that is, the matrix ||a;;|| where a;;
is the length of the edge connecting vertices 7 and j. Of course, it is
assumed that a;;=aj; and that a;;=0 for all 7 and j.)

The proof in [1] is based on a not unreasonable method of con-
structing a spanning subtree of minimum length. It is in this con-
struction that the interest largely lies, for it is a solution to a prob-
lem (Problem 1 below) which on the surface is closely related to one
version (Problem 2 below) of the well-known traveling salesman
problem.

Minimum Spanning Tree Algos

» Karger-Klein-Tarjan (1995)

A Randomized Linear-Time Algorithm
to Find Minimum Spanning Trees

DAVID R. KARGER

Stanford University, Stanford, California

PHILIP N. KLEIN

Brown University, Providence, Rhode Island
AND
ROBERT E. TARJAN

Pninceton University and NEC Research Institute, Princeton, New Jersey

Abstract. We present a randomized linear-time algorithm to find a minimum spanning tree in a
connected graph with edge weights. The algorithm uses random sampling in combination with a
recently discovered linear-time algorithm for verifying a minimum spanning tree. Our computa-
tional model is a unit-cost random-access machine with the restriction that the only operations
allowed on edge weights are binary comparisons.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexityl:
Nonnumerical Algorithms and Problems—computations on discrete structures; G.2.2 [Discrete
Mathematicsl: Graph Theory—graph algorithms, network problems, trees: G.3 [Probability and
Statistics]: probabilistic algorithms (including Monte Carlo); 1.5.3 [Pattern Recognition]: Clustering

General Terms: Algorithms

Additional Key Words and Phrases: Matroid, minimum spanning tree, network, randomized
algorithm

&%)

Prim-Jarnik Algorithm

» Add a random node to MST
» At each step

» FInd the unconnected node that can be connected
with the lowest-welght edge

» Add that node and edge to the MST
» Stop when all nodes added to MST

Random node
added to MST

B can be connected
by an edge
of weight 4

Example

Erither € or D
could be added

20

Example

Example

Erither D or F
could be added

Example

Erither D or F
could be added

Prim-Jarnik Algorithm

» How to determine which node to add

» Could consider all edges from MST each time

» Sounds slow!

» Instead: use a data structure that contains all
unconnected nodes and lets us access the node with
the smallest weight

» Sounds familiar!

» Think Dijkstra...

A

Prim-Jarnik Algorithm

» Keep all unconnected nodes In priority queue

» Priority of a node Is the minimum weight of an
Ca" ReeNRccline fnal hode torther sl

» VWhen adding a new node, update Its neighbors'’
welghts In PQ IT necessary

» At start, set initial node’s priority to O and all others
o &

» Use previous-pointers to determine which edge
to add

i

Example

Random node
set to cost O

PO = [(0,A),(%,B),(®,C),(®°,D),(®,E),(®°,F)]

26

Dequeue from PQ g
and update neighbors

PQ = [(4,B),(5,D),(%,C),(®,E),(°,F)]

L7

4
0 " 3
null
Dequeue from PQ

and update neighbors

PO = [(4,C),(4,D),(6,E),(8,F)]

28

i

v o

Dequeue from PQ
and update neighbors

c Dequeue from PQ
and update neighbors

BOS= [(4 Dl Ea

30

Dequeue from PQ
and update neighbors P@s=s (30 E)]

BOs =il] Dequeue from PQ
and update neighbors

B5)

Pseudo-code

function prim(G):
// Input: weighted, undirected graph G with vertices V
// Output: list of edges in MST
for all v in V:
V.cost = o
v.prev = null
= a random v in V // pick a random source s
s.cost = 0
MST = []
PQ = PriorityQueue(V) // priorities will be v.cost values
while PQ is not empty:
v = PQ.removeMin()
if v.prev != null:
MST.append((v, v.prev))

for all incident edges (v,u) of v such that u is in PQ:

if u.cost > (v,u).weight:
u.cost = (v,u).weight
u.prev = v
PQ.decreaseKey(u, u.cost)
return MST

Runtime Analysis

» Decorating nodes with distance and previous pointers is O (| V])

v

Putting nodes in PQ isO(|V |log|V|) (really O(|V]) since o priorities)

v

While loop runs | V| times
» removing vertex from PQ is 0 (log|V])

» S0 O(|V[log|V])

v

For loop (in while loop) runs |E| times in total
» Replacing vertex’s key in the PQ is 1og | V|
» S0 O(|E|log|V])

» Overall runtime

»O(|V| + |[V]log|V| + |V|log|V| + |E|log|V]|)
» = O((|E| + |V]|)log|V])

515

Proof of Correctness

» Common way of proving correctness of greedy algos
» show that algorithm Is always correct at every step

» Best way to do this Is by induction

» tricky part is coming up with the right invariant

36

Inductive invariant for Prim

» Want an invariant P(n), where n 1s number of
edges added so far

» Need to have:
» P(0) /base case|
» P(n) implesP(n + 1) [inductive case]

» P(size of MST) implies correctness

B

Inductive invariant for Prim

» Want an invariant P(n), where n 1s number of
edges added so far

» Need to have:

» P(0) /base case|

» P(n) implesP(n + 1) [inductive case]

» P(size of MST) implies correctness

» P(n)=f

st n edges added by Prim are a

subtree o

-some MST

38

Graph Cuts

» A cut Is any partition of the vertices into two groups

b

» Here G Is partitioned In 2

» with edges b and a joining the partitions

B

Proof of Correctness

* P(n)
» first n edges added by Prim are a subtree of some MST
» Base case when n=0

» no edges have been added yet so P(0) is trivially true

» Inductive Hypothesis

» first k edges added by Prim form a tree T which is subtree of some MST M

Proof of Correctness

» Inductive Step
» Let e be the (k+1)th edge that Is added
» e will connect T (green nodes) to an unvisited node (one of blue nodes)

» We need to show that adding e to T

» forms a subtree of some MST M’

» (which may or may not be the same MST as M)
d O

4

Proof of Correctness

» Iwo cases
» e isin original MST M
» elsnotinM

» Case l:eisinM

» there exists an MST that contains first k+1 edges

» So P(k+1) is truel 1H

Proof of Correctness

» (Case 2:eisnotinM
» If we add e=(u,Vv) to M then we get a cycle

» why! since M Is span. tree there must be path from u to v w/o e

» so there must be another edge e’ that connects T to unvisited nodes

» We know e.weight = e’ .weight because Prim chose e first

405

Proof of Correctness

» So ifwe add e to M and remove e’

» we getanew MST M’ that is no larger than M and contains T & e

M’

» P(k+1) Istrue

» because M’ is an MST that contains the first k+1 edges added
by Prim’s

44

Proof of Correctness

» Since we have shown
» P(0) Istrue

» P(k+1) istrue assuming P (k) Is true (for both
Cases)

» [he first n edges added by Prim form a subtree of
seifie SR

2455

Readings

» Dasgupta Section 5. |
» Explanations of MSTs

» algorithms discussed In this lecture and next lecture

46

