
Dijkstra’s Algorithm
‣ The algorithm is as follows:
‣ Decorate source with distance 0 & all other nodes with ∞
‣ Add all nodes to priority queue w/ distance as priority
‣ While the priority queue isn’t empty

‣ Remove node from queue with minimal priority

‣ Update distances of the removed node’s neighbors if distances 
decreased 

‣ When algorithm terminates, every node is decorated 
with minimal cost from source
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Today: 
- Finishing Dijkstra’s
- Minimum spanning trees



Dijkstra Pseudo-Code
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function dijkstra(G, s):
   // Input: graph G with vertices V, and source s
   // Output: Nothing
   // Purpose: Decorate nodes with shortest distance from s
   for v in V:
     v.dist = infinity  // Initialize distance decorations
     v.prev = null      // Initialize previous pointers to null
   s.dist = 0         // Set distance to start to 0

   PQ = PriorityQueue(V)    // Use v.dist as priorities
   while PQ not empty:
      u = PQ.removeMin()
      for all edges (u, v): //each edge coming out of u
         if u.dist + cost(u, v) < v.dist: // cost() is weight
            v.dist = u.dist + cost(u,v)   // Replace as necessary
            v.prev = u // Maintain pointers for path
            PQ.decreaseKey(v, v.dist)
 



Dijkstra Runtime w/ Heap
‣ If PQ implemented with Heap
‣ insert( ) is O(log|V|)
‣ you may need to upheap

‣ removeMin( ) is O(log|V|)
‣ you may need to downheap

‣ decreaseKey() is O(log|V|)
‣ assume we have dictionary that maps vertex to heap entry in 
O(log|V|) time (so no need to scan heap to find entry)

‣ you may need to upheap after decreasing the key

3



Dijkstra Runtime w/ Heap
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function dijkstra(G, s):
   for v in V:            
    v.dist = infinity 

     v.prev = null     
   s.dist = 0        

   PQ = PriorityQueue(V)   
   while PQ not empty:     
      u = PQ.removeMin()   
      for all edges (u, v):
         if v.dist > u.dist + cost(u, v):
            v.dist = u.dist + cost(u,v)  
            v.prev = u 
            PQ.decreaseKey(v, v.dist)   

O(|V|)

O(|V|)
O(log|V|)

O(log|V|)

O(|E|)
total

O(|V|log|V|)



Dijkstra Runtime w/ Heap
‣ If PQ implemented with Heap

‣ Note
‣ though the O(|E|) loop is nested in the O(|V|) loop

‣ we visit each edge at most twice rather than |V| times

‣ That’s why while loop is
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Dijkstra isn’ t perfect!
‣ We can find shortest path on weighted graph in 
‣ O((|V|+|E|)×log|V|)

‣ or can we…

‣ Dijkstra fails with negative edge weights

‣ Returns [A,C,D] when it should return [A,B,C,D]
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Negative Edge Weights
‣ Negative edge weights are problem for Dijkstra
‣ But negative cycles are even worse!
‣ because there is no true shortest path!
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Bellman-Ford Algorithm
‣ Algorithm that handles graphs w/ neg. edge 

weights
‣ Similar to Dijkstra’s but more robust
‣ Returns same output as Dijkstra’s for any graph w/ 

only positive edge weights (but runs slower)
‣ Returns correct shortest paths for graphs w/ neg. edge 

weights
‣ Detects and reports negative cycles
‣ How: not greedy!
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Spanning Trees
‣ A spanning tree of a graph is 
‣ edge subset forming a tree that spans every vertex
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Minimum Spanning Trees
‣ A minimum spanning tree (MST) is 
‣ spanning tree with minimum total edge weight

11

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4



Applications
‣ Networks

‣ electric
‣ computer
‣ water
‣ transportation

‣ Computer vision
‣ Facial recognition
‣ Handwriting recognition
‣ Image segmentation

‣ Low-density parity check codes (LDPC)
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‣ Prim-Jarnik Algorithm

Minimum Spanning Tree Algos
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‣ Kruskal’s algorithm (1956)

Minimum Spanning Tree Algos
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‣ Karger-Klein-Tarjan (1995)

Minimum Spanning Tree Algos
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Prim-Jarnik Algorithm
‣ Add a random node to MST
‣ At each step
‣ Find the unconnected node that can be connected 

with the lowest-weight edge
‣ Add that node and edge to the MST

‣ Stop when all nodes added to MST
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Example
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Example
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Example
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Example
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Example
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Prim-Jarnik Algorithm
‣ How to determine which node to add
‣ Could consider all edges from MST each time
‣ Sounds slow!

‣ Instead: use a data structure that contains all 
unconnected nodes and lets us access the node with 
the smallest weight
‣ Sounds familiar!

‣ Think Dijkstra…
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Prim-Jarnik Algorithm
‣ Keep all unconnected nodes in priority queue
‣ Priority of a node is the minimum weight of an 

edge connecting that node to the MST
‣ When adding a new node, update its neighbors’ 

weights in PQ if necessary
‣ At start, set initial node’s priority to 0 and all others 

to ∞
‣ Use previous-pointers to determine which edge 

to add
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Pseudo-code
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function prim(G):
   // Input: weighted, undirected graph G with vertices V
   // Output: list of edges in MST
   for all v in V:
      v.cost = ∞
      v.prev = null
   s = a random v in V // pick a random source s
   s.cost = 0
   MST = []
   PQ = PriorityQueue(V) // priorities will be v.cost values
   while PQ is not empty:
      v = PQ.removeMin()
      if v.prev != null:
         MST.append((v, v.prev))
      for all incident edges (v,u) of v such that u is in PQ:
         if u.cost > (v,u).weight:
            u.cost = (v,u).weight
            u.prev = v
            PQ.decreaseKey(u, u.cost)
  return MST



Runtime Analysis
‣ Decorating nodes with distance and previous pointers is O(|V|)
‣ Putting nodes in PQ is O(|V|log|V|) (really O(|V|) since ∞ priorities)
‣ While loop runs |V| times

‣ removing vertex from PQ is O(log|V|) 
‣ So O(|V|log|V|)

‣ For loop (in while loop) runs |E| times in total

‣ Replacing vertex’s key in the PQ is log|V|  
‣ So O(|E|log|V|)

‣ Overall runtime
‣ O(|V| + |V|log|V| + |V|log|V| + |E|log|V|) 

‣ = O((|E| + |V|)log|V|)
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Proof of Correctness
‣ Common way of proving correctness of greedy algos 
‣ show that algorithm is always correct at every step

‣ Best way to do this is by induction
‣ tricky part is coming up with the right invariant
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Inductive invariant for Prim
‣ Want an invariant P(n), where n is number of 

edges added so far
‣ Need to have:
‣ P(0) [base case]

‣ P(n) implies P(n + 1) [inductive case]

‣ P(size of MST) implies correctness
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Inductive invariant for Prim
‣ Want an invariant P(n), where n is number of 

edges added so far
‣ Need to have:
‣ P(0) [base case]

‣ P(n) implies P(n + 1) [inductive case]

‣ P(size of MST) implies correctness

‣ P(n)= first n edges added by Prim are a 
subtree of some MST
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Graph Cuts
‣ A cut is any partition of the vertices into two groups

‣ Here G is partitioned in 2
‣ with edges b and a joining the partitions
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Proof of Correctness
‣ P(n)

‣ first n edges added by Prim are a subtree of some MST

‣ Base case when n=0 
‣ no edges have been added yet so P(0) is trivially true

‣ Inductive Hypothesis
‣ first k edges added by Prim form a tree T which is subtree of some MST M
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Proof of Correctness
‣ Inductive Step

‣ Let e be the (k+1)th edge that is added
‣ e will connect T (green nodes) to an unvisited node (one of blue nodes)
‣ We need to show that adding e to T 

‣ forms a subtree of some MST M’ 

‣ (which may or may not be the same MST as M)
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Proof of Correctness
‣ Two cases

‣ e is in original MST M

‣ e is not in M

‣ Case 1: e is in M
‣ there exists an MST that contains first k+1 edges 

‣ So P(k+1) is true!
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Proof of Correctness
‣ Case 2: e is not in M

‣ if we add e=(u,v) to M then we get a cycle

‣ why? since M is span. tree there must be path from u to v w/o e

‣ so there must be another edge e’ that connects T to unvisited nodes

‣ We know e.weight ≤ e’.weight because Prim chose e first
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Proof of Correctness
‣ So if we add e to M and remove e’

‣ we get a new MST M’ that is no larger than M and contains T & e

‣ P(k+1) is true

‣ because M’ is an MST that contains the first k+1 edges added 
by Prim’s
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Proof of Correctness
‣ Since we have shown 
‣ P(0) is true

‣ P(k+1) is true assuming P(k) is true (for both 
cases) 

‣ The first n edges added by Prim form a subtree of 
some MST

45



Readings
‣ Dasgupta Section 5.1
‣ Explanations of MSTs 
‣ algorithms discussed in this lecture and next lecture
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