
Dijkstra’s Algorithm
‣ The algorithm is as follows:
‣ Decorate source with distance 0 & all other nodes with ∞
‣ Add all nodes to priority queue w/ distance as priority
‣ While the priority queue isn’t empty

‣ Remove node from queue with minimal priority

‣ Update distances of the removed node’s neighbors if distances
decreased

‣ When algorithm terminates, every node is decorated
with minimal cost from source

1

Today:
- Finishing Dijkstra’s
- Minimum spanning trees

Dijkstra Pseudo-Code

2

function dijkstra(G, s):
 // Input: graph G with vertices V, and source s
 // Output: Nothing
 // Purpose: Decorate nodes with shortest distance from s
 for v in V:
 v.dist = infinity // Initialize distance decorations
 v.prev = null // Initialize previous pointers to null
 s.dist = 0 // Set distance to start to 0

 PQ = PriorityQueue(V) // Use v.dist as priorities
 while PQ not empty:
 u = PQ.removeMin()
 for all edges (u, v): //each edge coming out of u
 if u.dist + cost(u, v) < v.dist: // cost() is weight
 v.dist = u.dist + cost(u,v) // Replace as necessary
 v.prev = u // Maintain pointers for path
 PQ.decreaseKey(v, v.dist)

Dijkstra Runtime w/ Heap
‣ If PQ implemented with Heap
‣ insert() is O(log|V|)
‣ you may need to upheap

‣ removeMin() is O(log|V|)
‣ you may need to downheap

‣ decreaseKey() is O(log|V|)
‣ assume we have dictionary that maps vertex to heap entry in
O(log|V|) time (so no need to scan heap to find entry)

‣ you may need to upheap after decreasing the key

3

Dijkstra Runtime w/ Heap

4

function dijkstra(G, s):
 for v in V:
 v.dist = infinity

 v.prev = null
 s.dist = 0

 PQ = PriorityQueue(V)
 while PQ not empty:
 u = PQ.removeMin()
 for all edges (u, v):
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u,v)
 v.prev = u
 PQ.decreaseKey(v, v.dist)

O(|V|)

O(|V|)
O(log|V|)

O(log|V|)

O(|E|)
total

O(|V|log|V|)

Dijkstra Runtime w/ Heap
‣ If PQ implemented with Heap

‣ Note
‣ though the O(|E|) loop is nested in the O(|V|) loop

‣ we visit each edge at most twice rather than |V| times

‣ That’s why while loop is
5

O(|V |+ |V | log |V |+|V | log |V |+ |E| log |V |)
= O(|V |+ |V | log |V |+ |E| log |V |)

= O

✓�
|V |+ |E|

�
· log |V |

◆

<latexit sha1_base64="Cl1sjm1oLBznX+bY+VxlwXucBE8=">AAACbnicbVHLSgMxFM2Mr1pftS5cVDFYlBahzIigLoSiCO6sYFuhKSWTpmNoZjIkGaG03fqB7vwHN/6BmekI9XEh4dxzzyHJiRdxprTjvFv2wuLS8kpuNb+2vrG5VdgutpSIJaFNIriQTx5WlLOQNjXTnD5FkuLA47TtDW+SefuFSsVE+KhHEe0G2A/ZgBGsDdUrvN5XJq0JPIFmR1z4s+b4Rze5/W6qEKH88RX81zQnQwimMuQx368ke2I4SRQGVxHpC51pU0m1Vyg7NSct+Be4GSiDrBq9whvqCxIHNNSEY6U6rhPp7hhLzQin0zyKFY0wGWKfdgwMcUBVd5zmNYVHhunDgZBmhRqm7LxjjAOlRoFnlAHWz+r3LCH/m3ViPbjojlkYxZqGZHbQIOZQC5iED/tMUqL5yABMJDN3heQZS0y0+aK8CcH9/eS/oHlau6y5D2fl+nWWRg6UwCGoABecgzq4Aw3QBAR8WEWrZO1Zn/auvW8fzKS2lXl2wI+yK18M5rhE</latexit><latexit sha1_base64="Cl1sjm1oLBznX+bY+VxlwXucBE8=">AAACbnicbVHLSgMxFM2Mr1pftS5cVDFYlBahzIigLoSiCO6sYFuhKSWTpmNoZjIkGaG03fqB7vwHN/6BmekI9XEh4dxzzyHJiRdxprTjvFv2wuLS8kpuNb+2vrG5VdgutpSIJaFNIriQTx5WlLOQNjXTnD5FkuLA47TtDW+SefuFSsVE+KhHEe0G2A/ZgBGsDdUrvN5XJq0JPIFmR1z4s+b4Rze5/W6qEKH88RX81zQnQwimMuQx368ke2I4SRQGVxHpC51pU0m1Vyg7NSct+Be4GSiDrBq9whvqCxIHNNSEY6U6rhPp7hhLzQin0zyKFY0wGWKfdgwMcUBVd5zmNYVHhunDgZBmhRqm7LxjjAOlRoFnlAHWz+r3LCH/m3ViPbjojlkYxZqGZHbQIOZQC5iED/tMUqL5yABMJDN3heQZS0y0+aK8CcH9/eS/oHlau6y5D2fl+nWWRg6UwCGoABecgzq4Aw3QBAR8WEWrZO1Zn/auvW8fzKS2lXl2wI+yK18M5rhE</latexit><latexit sha1_base64="Cl1sjm1oLBznX+bY+VxlwXucBE8=">AAACbnicbVHLSgMxFM2Mr1pftS5cVDFYlBahzIigLoSiCO6sYFuhKSWTpmNoZjIkGaG03fqB7vwHN/6BmekI9XEh4dxzzyHJiRdxprTjvFv2wuLS8kpuNb+2vrG5VdgutpSIJaFNIriQTx5WlLOQNjXTnD5FkuLA47TtDW+SefuFSsVE+KhHEe0G2A/ZgBGsDdUrvN5XJq0JPIFmR1z4s+b4Rze5/W6qEKH88RX81zQnQwimMuQx368ke2I4SRQGVxHpC51pU0m1Vyg7NSct+Be4GSiDrBq9whvqCxIHNNSEY6U6rhPp7hhLzQin0zyKFY0wGWKfdgwMcUBVd5zmNYVHhunDgZBmhRqm7LxjjAOlRoFnlAHWz+r3LCH/m3ViPbjojlkYxZqGZHbQIOZQC5iED/tMUqL5yABMJDN3heQZS0y0+aK8CcH9/eS/oHlau6y5D2fl+nWWRg6UwCGoABecgzq4Aw3QBAR8WEWrZO1Zn/auvW8fzKS2lXl2wI+yK18M5rhE</latexit><latexit sha1_base64="Cl1sjm1oLBznX+bY+VxlwXucBE8=">AAACbnicbVHLSgMxFM2Mr1pftS5cVDFYlBahzIigLoSiCO6sYFuhKSWTpmNoZjIkGaG03fqB7vwHN/6BmekI9XEh4dxzzyHJiRdxprTjvFv2wuLS8kpuNb+2vrG5VdgutpSIJaFNIriQTx5WlLOQNjXTnD5FkuLA47TtDW+SefuFSsVE+KhHEe0G2A/ZgBGsDdUrvN5XJq0JPIFmR1z4s+b4Rze5/W6qEKH88RX81zQnQwimMuQx368ke2I4SRQGVxHpC51pU0m1Vyg7NSct+Be4GSiDrBq9whvqCxIHNNSEY6U6rhPp7hhLzQin0zyKFY0wGWKfdgwMcUBVd5zmNYVHhunDgZBmhRqm7LxjjAOlRoFnlAHWz+r3LCH/m3ViPbjojlkYxZqGZHbQIOZQC5iED/tMUqL5yABMJDN3heQZS0y0+aK8CcH9/eS/oHlau6y5D2fl+nWWRg6UwCGoABecgzq4Aw3QBAR8WEWrZO1Zn/auvW8fzKS2lXl2wI+yK18M5rhE</latexit>

O

✓�
V log |V |

�
+
�
|E| log |V |

�◆

Dijkstra isn’ t perfect!
‣ We can find shortest path on weighted graph in
‣ O((|V|+|E|)×log|V|)

‣ or can we…

‣ Dijkstra fails with negative edge weights

‣ Returns [A,C,D] when it should return [A,B,C,D]
6

D

A

B

C

2

-7

5
8

Start
End

Negative Edge Weights
‣ Negative edge weights are problem for Dijkstra
‣ But negative cycles are even worse!
‣ because there is no true shortest path!

7

D

A

B

C

-10

5

15
3

Start
End

Bellman-Ford Algorithm
‣ Algorithm that handles graphs w/ neg. edge

weights
‣ Similar to Dijkstra’s but more robust
‣ Returns same output as Dijkstra’s for any graph w/

only positive edge weights (but runs slower)
‣ Returns correct shortest paths for graphs w/ neg. edge

weights
‣ Detects and reports negative cycles
‣ How: not greedy!

8

Minimum Spanning
Trees:

Prim-Jarnik
CS16: Introduction to Data Structures & Algorithms

Summer 2021

Spanning Trees
‣ A spanning tree of a graph is
‣ edge subset forming a tree that spans every vertex

10

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

Minimum Spanning Trees
‣ A minimum spanning tree (MST) is
‣ spanning tree with minimum total edge weight

11

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

Applications
‣ Networks

‣ electric
‣ computer
‣ water
‣ transportation

‣ Computer vision
‣ Facial recognition
‣ Handwriting recognition
‣ Image segmentation

‣ Low-density parity check codes (LDPC)
12

‣ Prim-Jarnik Algorithm

Minimum Spanning Tree Algos

13

‣ Kruskal’s algorithm (1956)

Minimum Spanning Tree Algos

14

‣ Karger-Klein-Tarjan (1995)

Minimum Spanning Tree Algos

15

Prim-Jarnik Algorithm
‣ Add a random node to MST
‣ At each step
‣ Find the unconnected node that can be connected

with the lowest-weight edge
‣ Add that node and edge to the MST

‣ Stop when all nodes added to MST

16

Example

17

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

Example

18

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

Random node
added to MST

Example

19

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

B can be connected
by an edge
of weight 4

Example

20

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

Either C or D
could be added

Example

21

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

Example

22

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

Either D or F
could be added

Example

23

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

Either D or F
could be added

Prim-Jarnik Algorithm
‣ How to determine which node to add
‣ Could consider all edges from MST each time
‣ Sounds slow!

‣ Instead: use a data structure that contains all
unconnected nodes and lets us access the node with
the smallest weight
‣ Sounds familiar!

‣ Think Dijkstra…

24

Prim-Jarnik Algorithm
‣ Keep all unconnected nodes in priority queue
‣ Priority of a node is the minimum weight of an

edge connecting that node to the MST
‣ When adding a new node, update its neighbors’

weights in PQ if necessary
‣ At start, set initial node’s priority to 0 and all others

to ∞
‣ Use previous-pointers to determine which edge

to add
25

Example

26

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

∞
null

∞
null

∞
null

PQ = [(0,A),(∞,B),(∞,C),(∞,D),(∞,E),(∞,F)]

Random node
set to cost 0

∞
null

∞
null

0
null

Example

27

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

∞
null4

A

∞
null

∞
null

5
A

0
null

PQ = [(4,B),(5,D),(∞,C),(∞,E),(∞,F)]

Dequeue from PQ
and update neighbors

Example

28

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

4
B4

A

6
B

8
B

4
B

0
null

PQ = [(4,C),(4,D),(6,E),(8,F)]

Dequeue from PQ
and update neighbors

Example

29

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

4
B4

A

2
C

8
B

4
B

0
null

PQ = [(2,E),(4,D),(8,F)]

Dequeue from PQ
and update neighbors

Example

30

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

4
B4

A

2
C

4
E

4
B

0
null

PQ = [(4,D),(4,F)]

Dequeue from PQ
and update neighbors

Example

31

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

4
B4

A

2
C

3
D

4
B

0
null

PQ = [(3,F)]
Dequeue from PQ

and update neighbors

Example

32

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

4
B4

A

2
C

3
D

4
B

0
null

PQ = [] Dequeue from PQ
and update neighbors

Example

33

A
B

C

E

F

D

5

4

4

3

8

6

4

2

4

4
B4

A

2
C

3
D

4
B

0
null

Pseudo-code

34

function prim(G):
 // Input: weighted, undirected graph G with vertices V
 // Output: list of edges in MST
 for all v in V:
 v.cost = ∞
 v.prev = null
 s = a random v in V // pick a random source s
 s.cost = 0
 MST = []
 PQ = PriorityQueue(V) // priorities will be v.cost values
 while PQ is not empty:
 v = PQ.removeMin()
 if v.prev != null:
 MST.append((v, v.prev))
 for all incident edges (v,u) of v such that u is in PQ:
 if u.cost > (v,u).weight:
 u.cost = (v,u).weight
 u.prev = v
 PQ.decreaseKey(u, u.cost)
 return MST

Runtime Analysis
‣ Decorating nodes with distance and previous pointers is O(|V|)
‣ Putting nodes in PQ is O(|V|log|V|) (really O(|V|) since ∞ priorities)
‣ While loop runs |V| times

‣ removing vertex from PQ is O(log|V|)
‣ So O(|V|log|V|)

‣ For loop (in while loop) runs |E| times in total

‣ Replacing vertex’s key in the PQ is log|V|
‣ So O(|E|log|V|)

‣ Overall runtime
‣ O(|V| + |V|log|V| + |V|log|V| + |E|log|V|)

‣ = O((|E| + |V|)log|V|)

35

Proof of Correctness
‣ Common way of proving correctness of greedy algos
‣ show that algorithm is always correct at every step

‣ Best way to do this is by induction
‣ tricky part is coming up with the right invariant

36

Inductive invariant for Prim
‣ Want an invariant P(n), where n is number of

edges added so far
‣ Need to have:
‣ P(0) [base case]

‣ P(n) implies P(n + 1) [inductive case]

‣ P(size of MST) implies correctness

37

Inductive invariant for Prim
‣ Want an invariant P(n), where n is number of

edges added so far
‣ Need to have:
‣ P(0) [base case]

‣ P(n) implies P(n + 1) [inductive case]

‣ P(size of MST) implies correctness

‣ P(n)= first n edges added by Prim are a
subtree of some MST

38

Graph Cuts
‣ A cut is any partition of the vertices into two groups

‣ Here G is partitioned in 2
‣ with edges b and a joining the partitions

39

a

b

Proof of Correctness
‣ P(n)

‣ first n edges added by Prim are a subtree of some MST

‣ Base case when n=0
‣ no edges have been added yet so P(0) is trivially true

‣ Inductive Hypothesis
‣ first k edges added by Prim form a tree T which is subtree of some MST M

40

T
M

IH

Proof of Correctness
‣ Inductive Step

‣ Let e be the (k+1)th edge that is added
‣ e will connect T (green nodes) to an unvisited node (one of blue nodes)
‣ We need to show that adding e to T

‣ forms a subtree of some MST M’

‣ (which may or may not be the same MST as M)

41

T

Proof of Correctness
‣ Two cases

‣ e is in original MST M

‣ e is not in M

‣ Case 1: e is in M
‣ there exists an MST that contains first k+1 edges

‣ So P(k+1) is true!

42

MT

e

IH

Proof of Correctness
‣ Case 2: e is not in M

‣ if we add e=(u,v) to M then we get a cycle

‣ why? since M is span. tree there must be path from u to v w/o e

‣ so there must be another edge e’ that connects T to unvisited nodes

‣ We know e.weight ≤ e’.weight because Prim chose e first
43

T e

e’

Me

e’

IH

Proof of Correctness
‣ So if we add e to M and remove e’

‣ we get a new MST M’ that is no larger than M and contains T & e

‣ P(k+1) is true

‣ because M’ is an MST that contains the first k+1 edges added
by Prim’s

44

T e

e’

M’

Proof of Correctness
‣ Since we have shown
‣ P(0) is true

‣ P(k+1) is true assuming P(k) is true (for both
cases)

‣ The first n edges added by Prim form a subtree of
some MST

45

Readings
‣ Dasgupta Section 5.1
‣ Explanations of MSTs
‣ algorithms discussed in this lecture and next lecture

46

