Medians & Selection

CS16: Introduction to Data Structures & Algorithms
Spring 2019
Outline

- Medians
- Selection
- Randomized Selection
Medians

- The median of a collection of numbers
 - is the middle element
 - half of the numbers are smaller and half are larger
- Used to summarize the collection
- The mean or average can also be used…
 - …but averages are sensitive to outliers
- What are the mean & median of
 - \([9, 5, 4, 6, 5, 7, 10000, 6, 4, 8]\)
 - mean 1005.4 & median 6
- Finding the median is easy: sort the list and pick the middle element
 - \(O(n \log n)\)…can we do better?
Selection

- Let’s consider a more general problem than median
- The Selection problem
 - given a list L and an integer k
 - output the kth smallest element in the list
- The Median problem can be solved using
 - Selection with $k = n/2$
Quickselect (Hoare’s Selection)

- Divide and conquer algorithm
 - divide: pick random element p (called pivot) and partition set into
 - L: elements less than p
 - E: elements equal to p
 - G: elements larger than p
 - make recursive call:
 - if $k \leq |L|$: call quickselect(L,k)
 - if $|L| < k \leq |L| + |E|$: return p
 - if $k > |L| + |E|$: call quickselect($G, k - (|L| + |E|))$
 - conquer: return
Quickselect (Hoare’s Selection)

Suppose \(k=4 \). Where is the 4th smallest element?
- the 4th smallest element has to be in \(L \)
- make recursive call on \(L \)…but with \(k=? \)

Suppose \(k=7 \). Where is the 7th smallest element?
- the 7th smallest element has to be in \(G \)
- make recursive call on \(G \)…but with \(k=? \)

Suppose \(k=6 \). Where is the 6th smallest element?
- the 6th smallest element has to be in \(E \)
- base case
Quickselect (Hoare’s Selection)

- make recursive call:
 - if $k \leq |L|$: call `quickselect(L, k)`
 - if $|L| < k \leq |L| + |E|$: return p
 - if $k > |L| + |E|$: call `quickselect(G, k - (|L| + |E|))`
Quickselect Pseudo-code

```python
quickselect(list, k):
    if list has 1 element return it
    pivot = list[rand(0, list.size)]
    L = []     E = []     G = []
    for x in list:
        if x < pivot: L.append(x)
        if x == pivot: E.append(x)
        if x > pivot: G.append(x)
    if k <= L.size:
        return quickselect(L, k)
    else if k <= (L.size + E.size):
        return pivot
    else
        return quickselect(G, k - (L.size + E.size))
```
Quickselect

```python
quickselect(list, k):
    if list has 1 element return it
    pivot = list[rand(0, list.size)]
    L = []  E = []  G = []
    for x in list:
        if x < pivot: L.append(x)
        if x == pivot: E.append(x)
        if x > pivot: G.append(x)
    if k <= L.size:
        return quickselect(L, k)
    else if k <= (L.size + E.size):
        return pivot
    else
        return quickselect(G, k - (L.size + E.size))
```
Quickselect

```python
quickselect(list, k):
    if list has 1 element return it
    pivot = list[rand(0, list.size)]
    L = []   E = []   G = []
    for x in list:
        if x < pivot: L.append(x)
        if x == pivot: E.append(x)
        if x > pivot: G.append(x)
    if k <= L.size:
        return quickselect(L, k)
    else if k <= (L.size + E.size)
        return pivot
    else
        return quickselect(G, k - (L.size + E.size))
```

Activity #1+2

3 min
Quickselect

\[
\text{quickselect}(\text{list, } k):
\]

if list has 1 element return it
pivot = list[rand(0, list.size)]
L = [] E = [] G = []
for x in list:
 if x < pivot: L.append(x)
 if x == pivot: E.append(x)
 if x > pivot: G.append(x)
if k <= L.size:
 return quickselect(L, k)
else if k <= (L.size + E.size)
 return pivot
else
 return quickselect(G, k - (L.size + E.size))
Quickselect

```python
quickselect(list, k):
    if list has 1 element return it
    pivot = list[rand(0, list.size)]
    L = []     E = []     G = []
    for x in list:
        if x < pivot: L.append(x)
        if x == pivot: E.append(x)
        if x > pivot: G.append(x)
    if k <= L.size:
        return quickselect(L, k)
    else if k <= (L.size + E.size)
        return pivot
    else
        return quickselect(G, k – (L.size + E.size))
```

Activity #1+2
Quickselect

```python
quickselect(list, k):
    if list has 1 element return it
    pivot = list[rand(0, list.size)]
    L = []     E = []     G = []
    for x in list:
        if x < pivot: L.append(x)
        if x == pivot: E.append(x)
        if x > pivot: G.append(x)
    if k <= L.size:
        return quickselect(L, k)
    else if k <= (L.size + E.size)
        return pivot
    else
        return quickselect(G, k – (L.size + E.size))
```
Quickselect Analysis

- How fast is Quickselect?
 - kind of like Quicksort except we make only 1 recursive call
 - The worst-case is we keep picking min/max element as pivot
 - which leads to worst-case $O(n^2)$ run time
- What about expected run time? (remember Quickselect is randomized)
 - We’ll assume all elements are distinct
 - if list has more than one copy of pivot,
 - it would shrink the sub-lists and improve runtime
Quickselect Analysis

- Each pivot has equal probability of being chosen
- Each pivot splits sequence into two
 - one of size \(i \) and one of size \(n-1-i \)
 - we recur on only 1 set
- Recurrence relation now has form
 \[
 \mathbb{E}[T(n)] = (n - 1) + \frac{1}{n} \sum_{i=1}^{n-1} T(i)
 \]
- which is \(O(n) \)

Don’t need to know the proof of this.
Summary

- Quickselect runs in expected $O(n)$ time
- Also, if we can solve Selection we can solve Median
 - $\text{Median}(L) = \text{Select}(L, \frac{n}{2})$
 - So we can solve Median in expected $O(n)$ time
- What if instead of choosing a random pivot in Quicksort, we used the median?
 - In Quicksort, we could use Quickselect to find the median
 - we would set $\text{pivot} = \text{Quickselect}(L, \frac{n}{2})$
 - this would avoid the worst-case behavior of Quicksort (i.e., always choosing min/max element)
 - but Quickselect is worst-case $O(n^2)$ so Quicksort would be worst-case $\Omega(n^2)$
 - which is worse than Merge Sort
Readings

- Dasgupta et al.
 - Section 2.4: analysis of median finding algorithms
- Wocjan’s analysis of Selection w/ random pivot
 - http://www.eecs.ucf.edu/courses/cot5405/fall2010/chapter1_2/QuickSelAvgCase.pdf