Breadth-first Search and

Shortest Paths in Graphs

CSI 6: Introduction to Data Structures \& Algorithms Summer 2021

BFT and DFT

- Remember BFT and DFT on trees?
- We can also do them on graphs
- a tree is just a special kind of graph
- often used to find certain values in graphs

Breadth First Traversal:Tree vs. Graph

```
function treeBFT(root):
    //Input: Root node of tree
    //Output: Nothing
    Q = new Queue()
    Q.enqueue(root)
    while Q is not empty:
        node = Q.dequeue()
        doSomething(node)
        enqueue node's children
```

doSomething() could print, add to list, decorate node etc...

```
function graphBFT(start):
    //Input: start vertex
    //Output: Nothing
    Q = new Queue()
    start.visited = true
    Q.enqueue(start)
    while Q is not empty:
        node = Q.dequeue()
        doSomething(node)
        for neighbor in adj nodes:
        if not neighbor.visited:
        neighbor.visited = true
        Q.enqueue(neighbor)
```

 Mark nodes as visited otherwise you will loop
 forever!

Applications: Flight Paths Exist

- Given undirected graph with airports \& flights
- is it possible to fly from one airport to another?
- Strategy
- use breadth first search starting at first node
- and determine if ending airport is ever visited

Applications: Flight Paths Exist

- Is there flight from SFO to PVD?

Applications: Flight Paths Exist

- Is there flight from SFO to PVD?

Applications: Flight Paths Exist

- Is there flight from SFO to PVD?

Applications: Flight Paths Exist

- Is there flight from SFO to PVD?

- Yes! but how do we do it with code?

Flight Paths Exist Pseudo-Code

```
function pathexists(from, to):
    //Input: from: vertex, to: vertex
    //Output: true if path exists, false otherwise
    Q = new Queue()
    from.visited = true
    Q.enqueue(from)
    while Q is not empty:
        airport = Q.dequeue()
        if airport == to:
            return true
        for neighbor in airport's adjacent nodes:
            if not neighbor.visited:
                neighbor.visited = true
                Q.enqueue(neighbor)
    return false
```


Applications: Flight Layovers

- Given undirected graph with airports \& flights
- decorate vertices w/ least number of stops from a given source
- if no way to get to a an airport decorate w/ ∞
- Strategy
- decorate each node w/ initial 'stop value' of ∞
- use breadth first traversal to decorate each node...
- ...w/ 'stop value' of one greater than its previous value

Flight Layovers Pseudo-Code

```
function numStops(G, source):
    //Input: G: graph, source: vertex
    //Output: Nothing
    //Purpose: decorate each vertex with the lowest number of
    // layovers from source.
    for every node in G:
        node.stops = infinity
    Q = new Queue()
    source.stops = 0
    source.visited = true
    Q.enqueue(source)
    while Q is not empty:
        airport = Q.dequeue()
        for neighbor in airport's adjacent nodes:
            if not neighbor.visited:
                neighbor.visited = true
                neighbor.stops = airport.stops + 1
                Q.enqueue(neighbor)
```


Flight Layovers Example

Flight Layovers Example

What if we want a path?

- numStops gives us the distance
- Want to know how to get from (e.g.) HNL to LGA
- Strategy: at each node we reach, record the node we used to get there

Flight Layovers Pseudo-Code

```
function numStops(G, source):
    //Input: G: graph, source: vertex
    //Output: Nothing
    //Purpose: decorate each vertex with the lowest number of
    // layovers from source.
    for every node in G:
        node.stops = infinity
        node.previous = null
    Q = new Queue()
    source.stops = 0
    source.visited = true
    Q.enqueue(source)
    while Q is not empty:
        airport = Q.dequeue()
        for neighbor in airport's adjacent nodes:
        if not neighbor.visited:
            neighbor.visited = true
            neighbor.stops = airport.stops + 1
            neighbor.previous = airport
            Q.enqueue(neighbor)
```


Flight paths

Single Source Shortest Paths

- SSSP problem: find shortest paths to all other nodes in a graph from a particular starting node
- Graph can be directed or undirected (we'll present on undirected graphs)
- Edges can have weights

Train trip!

Train trip!

What's the trip between PVD->SF that makes fewest stops?

Train trip!

What's the trip between PVD->SF that makes fewest stops?

Train trip!

Train trip!

Shortest Path

- Why does BFS work with unit edges?
- Nodes visited in order of total distance from source
- We need way to do the same even when edges have distinct weights!

Can we modify BFS?

```
function distance(G, source):
    //Input: G: graph, source: vertex
    //Output: Nothing
    //Purpose: decorate each vertex with the lowest cost of
    // a path from the source.
    for every node in G:
        node.stops = infinity
        node.previous = null
    Q = new Queue()
    source.stops = 0
    source.visited = true
    Q.enqueue(source)
    while Q is not empty:
        airport = Q.dequeue()
        for neighbor in airport's adjacent nodes:
        if not neighbor.visited:
            neighbor.visited = true
            neighbor.stops = airport.stops + 1
            neighbor.previous = airport
            Q.enqueue(neighbor)
```


Can we modify BFS?

```
function distance(G, source):
    //Input: G: graph, source: vertex
    //Output: Nothing
    //Purpose: decorate each vertex with the lowest cost of
    // a path from the source.
    for every node in G:
        node.distance = infinity
        node.previous = null
    Q = new Queue()
    source.distance = 0
    source.visited = true
    Q.enqueue(source)
    while Q is not empty:
    node = Q.dequeue()
    for neighbor in nodes's adjacent nodes:
        if not neighbor.visited:
            neighbor.visited = true
            neighbor.distance = node.distance + 1
            neighbor.previous = node
            Q.enqueue(neighbor)
```


Can we modify BFS?

```
function distance(G, source):
    //Input: G: graph, source: vertex
    //Output: Nothing
    //Purpose: decorate each vertex with the lowest cost of
    // a path from the source.
    for every node in G:
        node.distance = infinity
        node.previous = null
    Q = new Queue()
    source.distance = 0
    source.visited = true
    Q.enqueue(source)
    while Q is not empty:
    node = Q.dequeue()
    for neighbor in nodes's adjacent nodes:
        if node.distance + cost(node, neighbor) < neighbor.distance:
            neighbor.visited = true
            neighbor.distance = node.distance + 1
            neighbor.previous = node
            Q.enqueue(neighbor)
```


Can we modify BFS?

```
function distance(G, source):
    //Input: G: graph, source: vertex
    //Output: Nothing
    //Purpose: decorate each vertex with the lowest cost of
    // a path from the source.
    for every node in G:
        node.distance = infinity
        node.previous = null
    Q = new Queue()
    source.distance = 0
    source.visited = true
    Q.enqueue(source)
    while Q is not empty:
    node = Q.dequeue()
    for neighbor in nodes's adjacent nodes:
        if node.distance + cost(node, neighbor) < neighbor.distance:
                neighbor.distance = node.distance + cost(node, neighbor)
            neighbor.previous = node
            somehow add neighbor to Q at the right place
```


Shortest Path

- Use a priority queue!
- where priorities are total distances from source
- By visiting nodes in order returned by removeMin()...
- ...you visit nodes in order of how far they are from source
- You guarantee shortest path to node because...
- ...you don't explore a node until all nodes closer to source have already been explored

Dijkstra's Algorithm

- The algorithm is as follows:
- Decorate source with distance 0 \& all other nodes with $\boldsymbol{\infty}$
- Add all nodes to priority queue w/ distance as priority
- While the priority queue isn't empty
- Remove node from queue with minimal priority
- Update distances of the removed node's neighbors if distances decreased
- When algorithm terminates, every node is decorated with minimal cost from source

Dijkstra's Algorithm Example

- Step I
- Label source w/ dist. 0
- Label other vertices w/ dist. $\boldsymbol{\infty}$
- Add all nodes to Q
- Step 2
- Remove node with min. priority from Q (S in this example).
- Calculate dist. from source to removed node's neighbors...
- ...by adding adjacent edge weights to S's dist.

Dijkstra's Algorithm Example

- Step 3
- While Q isn't empty,
- repeat previous step
- removing A this time
- Priorities of nodes in Q may have to be updated
- ex: B's priority
- Step 4
- Repeat again by removing vertex B
- Update distances that are shorter using this path than before
- ex: C now has a distance 6 not 10

Dijkstra's Algorithm Example

- Step 5
- Repeat
- this time removing C
- Step 6
- After removing D...
- ...every node has been visited...
- ...and decorated w/ shortest dist. to source

Dijkstra's Example 2

A	B	C	D	E
0	∞	∞	∞	∞

Dijkstra's Example

A	B	C	D	E
0	4	2	∞	∞

Dijkstra's Example

Dijkstra's Example

Dijkstra's Example

Dijkstra's Algorithm

- Comes up with an optimal solution
- shortest path to each node
- Like many optimization algorithms, uses dynamic programming
- overlapping subproblems (distances to nodes)
- solved in a particular order (closest first)
- Dijkstra's is greedy
- at each step, considers next closest node
- Greedy algorithms not always optimal, usually fast

Dijkstra Pseudo-Code

```
function dijkstra(G, s):
    // Input: graph G with vertices V, and source s
    // Output: Nothing
    // Purpose: Decorate nodes with shortest distance from s
    for v in V:
        v.dist = infinity // Initialize distance decorations
        v.prev = null // Initialize previous pointers to null
    s.dist = 0 // Set distance to start to 0
    PQ = PriorityQueue(V) // Use v.dist as priorities
    while PQ not empty:
    u = PQ.removeMin()
    for all edges (u, v): //each edge coming out of u
        if u.dist + cost(u, v) < v.dist: // cost() is weight
        v.dist = u.dist + cost(u,v) // Replace as necessary
        v.prev = u // Maintain pointers for path
        PQ.decreaseKey(v, v.dist)
```


Dijkstra Runtime w/ Heap

- If PQ implemented with Heap
- insert() is $O(\log |V|)$
- you may need to upheap
- removeMin() is $O(\log |\mathrm{~V}|)$
- you may need to downheap
- decreaseKey () is $\mathrm{O}(\log |\mathrm{V}|)$
- assume we have dictionary that maps vertex to heap entry in $\mathrm{O}(\log |\mathrm{V}|)$ time (so no need to scan heap to find entry)
- you may need to upheap after decreasing the key

Dijkstra Runtime w/ Heap

```
function dijkstra(G, s):
    for v in V:
        v.dist = infinity
        v.prev = null
s.dist = 0
    PQ = PriorityQueue(V)
    while PQ not empty: «
    u = PQ.removeMin() & O(log|V|)
        for all edges (u, v): « % O(|E|)
        if v.dist > u.dist + cost(u, v): total
        v.dist = u.dist + cost(u,v)
        v.prev = u
            PQ.decreaseKey(v, v.dist)
        O(|v|log|v|)

\section*{Dijkstra Runtime w/ Heap}
- If PQ implemented with Heap
\[
\begin{aligned}
& O(|V|+|V| \log |V|+|V| \log |V|+|E| \log |V|) \\
&=O(|V|+|V| \log |V|+|E| \log |V|) \\
&=O((|V|+|E|) \cdot \log |V|)
\end{aligned}
\]
- Note
- though the \(\mathrm{O}(|\mathrm{E}|)\) loop is nested in the \(\mathrm{O}(|\mathrm{V}|)\) loop
- we visit each edge at most twice rather than \(|\mathrm{V}|\) times
- That's why while loop is \(O((V \log |V|)+(|E| \log |V|))\)

\section*{Dijkstra isn' t perfect!}
- We can find shortest path on weighted graph in
- O( (|V|+|E|)×log|V|)
- or can we...
- Dijkstra fails with negative edge weights

- Returns [A, C, D] when it should return [A, B, C , D]

\section*{Negative Edge Weights}
- Negative edge weights are problem for Dijkstra
- But negative cycles are even worse!
- because there is no true shortest path!


\section*{Bellman-Ford Algorithm}
- Algorithm that handles graphs w/ neg. edge weights
- Similar to Dijkstra's but more robust
- Returns same output as Dijkstra's for any graph w/ only positive edge weights (but runs slower)
- Returns correct shortest paths for graphs w/ neg. edge weights
- How: not greedy!```

