Breadth-first Search
and
Shortest Paths in Graphs

CS16: Introduction to Data Structures & Algorithms
Summer 202 |

B and Dr |

» Remember BFT and DFT on trees!

» We can also do them on graphs

» a tree is just a special kind of graph

» often used to find certain values in graphs

Breadth First Traversal: Tree vs. Graph

function graphBFT(start):
//Input: start vertex
//Output: Nothing
Q = new Queue()
start.visited = true
Q.enqueue(start)
while Q is not empty:

function treeBFT(root):
//Input: Root node of tree
//Output: Nothing
Q = new Queue()

Q.enqueue(root)

while Q is not empty:
node = Q.dequeue()
doSomething(node)
enqueue node’s children

node = Q.dequeue()
doSomething(node)
for neighbor in adj nodes:
if not neighbor.visited:
neighbor.visited = true

Q.enqueue (neighbor)

doSomething() could
print, add to list, decorate

node etc...

Mark nodes as visited otherwise you will loop

forever!

Applications: Flight Paths Exist

» Given undirected graph with airports & flights

» IS It possible to fly from one airport to another?
» Strategy

» use breadth first search starting at first node

» and determine If ending airport Is ever visited

@O @ ORD o
el
= <D

CMa>

4

Applications: Flight Paths Exist

» s there flight from SFO to PVD?

Applications: Flight Paths Exist

» s there flight from SFO to PVD?

Applications: Flight Paths Exist

» s there flight from SFO to PVD?

@ @ —(PVD
570 ‘ <
AO— @ s

Applications: Flight Paths Exist

» s there flight from SFO to PVD?

BTV

» Yes! but how do we do 1t with code?

Flight Paths Exist Pseudo-Code

function pathExists(from, to):
//Input: from: vertex, to: vertex
//Output: true if path exists, false otherwise

Q = new Queue()
from.visited = true
Q.enqueue(from)
while Q is not empty:
airport = Q.dequeue()
if airport == to:
return true
for neighbor in airport’s adjacent nodes:
if not neighbor.visited:
neighbor.visited = true
Q.enqueue (neighbor)

return false

Applications: Flight Layovers

» Given undirected graph with airports & flights

» decorate vertices w/ least number of
stops from a given source

» If no way to get to a an airport decorate w/ 00

» Strategy

» decorate each node w/ initial 'stop value' of 60
» use breadth first traversal to decorate each node...

» ...W/ ‘stop value’ of one greater than Its previous value

10

Flight Layovers Pseudo-Code

function numStops (G, source):

//Input: G: graph, source: vertex
//Output: Nothing
//Purpose: decorate each vertex with the lowest number of

// layovers from source.

for every node in G:
node.stops = infinity

Q = new Queue()
source.stops = 0
source.visited = true
Q.enqueue (source)
while Q is not empty:
airport = Q.dequeue()
for neighbor in airport’s adjacent nodes:
if not neighbor.visited:
neighbor.visited = true
neighbor.stops = airport.stops + 1
Q.enqueue (neighbor)

Flight Layovers Example

Flight Layovers Example

> @ @,"

What It we want a path?

» numStops gives us the distance

» Want to know how to get from (e.g.) HNL to
LGA

» Strategy: at each node we reach, record the
node we used to get there

Flight Layovers Pseudo-Code

function numStops (G, source):
//Input: G: graph, source: vertex
//0Output: Nothing
//Purpose: decorate each vertex with the lowest number of
// layovers from source.

for every node in G:
node.stops = infinity

node.previous = null

QO = new Queue()
source.stops = 0
source.visited = true
Q.enqueue (source)
while Q is not empty:
airport = Q.dequeue()
for neighbor in airport’s adjacent nodes:
if not neighbor.visited:
neighbor.visited = true

neighbor.stops = airport.stops + 1

neighbor.previous = airport

Q.enqueue (neighbor)

Flight paths

00 00 2 (LAX) 2(LAX) 3(ORD)
BTV > (500 oD P
(S
| 1 (HNL) <>

2 (LAX) 3(DFW)

Single Source Shortest Paths

» SSSP problem: find shortest paths to all other
nodes In a graph from a particular starting node

» Graph can be directed or undirected (we'll
present on undirected graphs)

» Edges can have weights

Iramn trip!

Start

Iramn trip!

Start

What's the trip between PVD->5F
that makes fewest stops!?

Iramn trip!

What's the trip between PVD->5F
that makes fewest stops!?

20

Iramn trip!

Start
10
CLE
CH|
35 15
End
20
STL 10
15 DC
10
15
PHX ATL
10 ~—M—— 20

What's the

cheapest trip?

2|

Iramn trip!

Start
10
CLE
CH|
35 15
End
20
STL 10
15 DC
10
15
PHX ATL
10 ~—M—— 20

What's the

BFS ignores edge weights!

)

cheapest trip?

Shortest Path

» Why does BFS work with unit edges!?

» Nodes visited in order of total distance from source

» We need way to do the same even when edges
have distinct weights!

25

Can we modity BFS!

function distance (G, source):
//Input: G: graph, source: vertex
//0Output: Nothing
//Purpose: decorate each vertex with the lowest cost of
// a path from the source.

for every node in G:
node.stops = infinity
node.previous = null

QO = new Queue()
source.stops = 0
source.visited = true
Q.enqueue (source)
while Q is not empty:
airport = Q.dequeue()
for neighbor in airport’s adjacent nodes:
if not neighbor.visited:
neighbor.visited = true

neighbor.stops = airport.stops + 1

neighbor.previous = airport

Q.enqueue (neighbor)

Can we modity BFS!

function distance (G, source):

//Input: G: graph, source: vertex

//0Output: Nothing

//Purpose: decorate each vertex with the lowest cost of
// a path from the source.

for every node in G:
node.distance = infinity
node.previous = null

QO = new Queue()
source.distance = 0
source.visited = true
Q.enqueue (source)
while Q is not empty:
node = Q.dequeue()
for neighbor in nodes’s adjacent nodes:
if not neighbor.visited:
neighbor.visited = true
neighbor.distance = node.distance + 1
neighbor.previous = node

Q.enqueue (neighbor)

Can we modity BFS!

function distance (G, source):
//Input: G: graph, source: vertex
//0Output: Nothing
//Purpose: decorate each vertex with the lowest cost of
// a path from the source.

for every node in G:
node.distance = infinity
node.previous = null

QO = new Queue()
source.distance = 0
source.visited = true
Q.enqueue (source)
while Q is not empty:
node = Q.dequeue()
for neighbor in nodes’s adjacent nodes:

if node.distance + cost(node, neighbor) < neighbor.distance:

neighbor.visited = true
neighbor.distance = node.distance + 1
neighbor.previous = node

Q.enqueue (neighbor)

Can we modity BFS!

function distance (G, source):

//Input: G: graph, source: vertex
//0Output: Nothing
//Purpose: decorate each vertex with the lowest cost of

// a path from the source.

for every node in G:
node.distance = infinity
node.previous = null

QO = new Queue()
source.distance = 0
source.visited = true
Q.enqueue (source)
while Q is not empty:
node = Q.dequeue()
for neighbor in nodes’s adjacent nodes:
if node.distance + cost(node, neighbor) < neighbor.distance:
neighbor.distance = node.distance + cost(node, neighbor)
neighbor.previous = node
somehow add neighbor to Q at the right place

Shortest Path

» Use a priority queue!

» where priorities are total distances from source

» By visiting nodes In order returned by
removeMin()...

» ...you visit nodes In order of how far they are from
source

» You guarantee shortest path to node because...

I G lldon T explore a node until all nedesic@seniie
source have already been exploread

28

Dijkstra’s Algorithm

» [he algorithm is as follows:

» Decorate source with distance 0 & all other nodes with oo
» Add all nodes to priority queue w/ distance as priority

» While the priority queue isn't empty
» Remove node from queue with minimal priority

» Update distances of the removed node’s neighbors If distances
decreased

» VWhen algorithm terminates, every node Is decorated
with minimal cost from source

i

Dijkstra’s Algorithm Example

> SiEp |
» Label source w/ dist. O

» |abel other vertices w/ dist. oo

» Add all nodes to Q
» Step 2

» Remove node with min. priority
from Q (S in this example).

» Calculate dist. from source to
removed node’s neighbors. ..

» ...by adding adjacent edge
welghts to S's dist.

Dijkstra’s Algorithm Example

5 " 10

> Sl 2
» While Q isn't empty,
» repeat previous step
» removing A this time

» Priorities of nodes in Q may have
to be updated

» ex:B's priority
> SlEp A
» Repeat again by removing vertex B

» Update distances that are shorter
using this path than before

» ex: C now has a distance 6 not 10

31

Dijkstra’s Algorithm Example

4

> Sitep 5

Repeat

» this time removing C

> SiED 6

» After removing D...

b .. .Every node dsiessi

4

visited. .

...and decorated w/

shortes

- dist. to source

Dijkstra’s Example 2

Dijkstra’s Example

Dijkstra’s Example

515

Dijkstra’s Example

36

Dijkstra’s Example

B

Dijkstra’s Algorithm

» Comes up with an optimal solution
» shortest path to each node

» Like many optimization algorithms, uses dynamic
programming

» overlapping subproblems (distances to nodes)
» solved in a particular order (closest first)

» Dijkstra’s Is greeay
» at each step, considers next closest node

» Greedy algorithms not always optimal, usually fast

38

Dijkstra Pseudo-Code

function dijkstra(G, s):

// Input: graph G with vertices V, and source s

// Output: Nothing

// Purpose: Decorate nodes with shortest distance from s

for v in V:
v.dist = infinity // Initialize distance decorations
v.prev = null // Initialize previous pointers to null

s.dist = // Set distance to start to 0

PQ = PriorityQueue (V) // Use v.dist as priorities
while PQ not empty:
u = PQ.removeMin/()
for all edges (u, v): //each edge coming out of u
if u.dist + cost(u, v) < v.dist: // cost() is weight

v.dist = u.dist + cost(u,Vv) // Replace as necessary

V.prev = u // Maintain pointers for path
PQ.decreaseKey (v, v.dist)

Dijkstra Runtime w/ Heap

» T PQ implemented with Heap
» insert() isO(log|V]|)
» you may need to upheap
» removeMin() isO(log|V]|)
» you may need to downheap

» decreaseKey () isO(log|V])

» assume we have dictionary that maps vertex to heap entry In
O(log|V|) time (so no need to scan heap to find entry)

» You may need to upheap after decreasing the key

40

Dijkstra Runtime w/ Heap

function dijkstra(G, s):

for v in V: <«
v.dist = infinity
v.prev = null
s.dist = 0

PQ = PriorityQueue(V) <

o(|v])

o(|V|log|V])

while PQ not empty: < O (‘V‘)
u = PQ.removeMin() o(log‘v‘)
for all edges (u, V): 0(‘E‘)
if v.dist > u.dist + cost(u, v): e sl
v.dist = u.dist + cost(u,Vv)
vV.prev = u
PQ.decreaseKey (v, v.dist"t O(log ‘ V‘)

i

Dijkstra Runtime w/ Heap

» T PQ implemented with Heap

O(|V]+|V|log|V|+|V]log |V| + |E|log |V])
— O(|V]| + [V |log |V = (2 Hosaia

= 0((v1+121) 10g V1)

» Note

» though the O(|E|) loop is nested inthe O(| V]) loop
» we visit each edge at most twice rather than |V | times

» [hat's why while loop Is O((Vlog\V\) F (\E\IOgIV!)>

i

Dijkstra 1sn' t perfect!

» We can find shortest path on weighted graph in
» O((|V[+[E[)*xlog|V])
» O Can we...

» Dijkstra fails with negative edge weights

Start
End

8

» Returns [A,C,D] when it should return [A,B,C,D]

405

Negative tage Weights

» Negative edge welights are problem for Dijkstra
» But negative cycles are even worse!

» because there Is no true shortest path!

Start T
A 15 il

@ -

3

44

Bellman-rord Algorithm

» Algorithm that handles graphs w/ neg. edge
welghts

» Similar to Dijkstra’s but more robust

» Returns same output as Dijkstra’s for any graph w/
only posritive edge weights (but runs slower)

» Returns correct shortest paths for graphs w/ neg.
edge welghts

» How: not greedy!

2455

