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BFT and DFT
‣ Remember BFT and DFT on trees?
‣ We can also do them on graphs
‣ a tree is just a special kind of graph
‣ often used to find certain values in graphs
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Breadth First Traversal: Tree vs. Graph
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function treeBFT(root):
//Input: Root node of tree
//Output: Nothing
Q = new Queue()
Q.enqueue(root)
while Q is not empty:

node = Q.dequeue()
doSomething(node)
enqueue node’s children

function graphBFT(start):
//Input: start vertex
//Output: Nothing
Q = new Queue()
start.visited = true
Q.enqueue(start)
while Q is not empty:

node = Q.dequeue()
doSomething(node)
for neighbor in adj nodes:

if not neighbor.visited:
neighbor.visited = true
Q.enqueue(neighbor)

doSomething( ) could  
print, add to list, decorate 
node etc…

Mark nodes as visited otherwise you will loop 
forever!



Applications: Flight Paths Exist
‣ Given undirected graph with airports & flights
‣ is it possible to fly from one airport to another?

‣ Strategy 
‣ use breadth first search starting at first node 
‣ and determine if ending airport is ever visited
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Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?
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Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?
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Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

‣ Yes! but how do we do it with code?
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Flight Paths Exist Pseudo-Code
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function pathExists(from, to):
//Input: from: vertex, to: vertex
//Output: true if path exists, false otherwise
Q = new Queue()
from.visited = true
Q.enqueue(from)
while Q is not empty:

airport = Q.dequeue()
if airport == to:

return true
for neighbor in airport’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
Q.enqueue(neighbor)

return false



Applications: Flight Layovers
‣ Given undirected graph with airports & flights
‣ decorate vertices w/ least number of  

stops from a given source 

‣ if no way to get to a an airport decorate w/ ∞
‣ Strategy 
‣ decorate each node w/ initial ‘stop value’ of ∞ 
‣ use breadth first traversal to decorate each node…
‣ …w/ ‘stop value’ of one greater than its previous value
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Flight Layovers Pseudo-Code
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function numStops(G, source):
//Input: G: graph, source: vertex

   //Output: Nothing
   //Purpose: decorate each vertex with the lowest number of
   //         layovers from source.
   
   for every node in G:

node.stops = infinity

   Q = new Queue()
   source.stops = 0
   source.visited = true
   Q.enqueue(source)
   while Q is not empty:

airport = Q.dequeue()   
for neighbor in airport’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
neighbor.stops = airport.stops + 1
Q.enqueue(neighbor)



Flight Layovers Example
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Flight Layovers Example
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What if we want a path?
‣ numStops gives us the distance
‣ Want to know how to get from (e.g.) HNL to 

LGA
‣ Strategy: at each node we reach, record the 

node we used to get there
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Flight Layovers Pseudo-Code
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function numStops(G, source):
//Input: G: graph, source: vertex

   //Output: Nothing
   //Purpose: decorate each vertex with the lowest number of
   //         layovers from source.
   
   for every node in G:

node.stops = infinity
node.previous = null

   Q = new Queue()
   source.stops = 0
   source.visited = true
   Q.enqueue(source)
   while Q is not empty:

airport = Q.dequeue()   
for neighbor in airport’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
neighbor.stops = airport.stops + 1
neighbor.previous = airport
Q.enqueue(neighbor)



Flight paths
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Single Source Shortest Paths
‣ SSSP problem: find shortest paths to all other 

nodes in a graph from a particular starting node
‣ Graph can be directed or undirected (we’ll 

present on undirected graphs)
‣ Edges can have weights
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Train trip!
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Train trip!
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Train trip!
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Train trip!
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Shortest Path
‣ Why does BFS work with unit edges?
‣ Nodes visited in order of total distance from source

‣ We need way to do the same even when edges 
have distinct weights!
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Can we modify BFS?

24

function distance(G, source):
//Input: G: graph, source: vertex

   //Output: Nothing
   //Purpose: decorate each vertex with the lowest cost of
   //         a path from the source.
   
   for every node in G:

node.stops = infinity
node.previous = null

   Q = new Queue()
   source.stops = 0
   source.visited = true
   Q.enqueue(source)
   while Q is not empty:

airport = Q.dequeue()   
for neighbor in airport’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
neighbor.stops = airport.stops + 1
neighbor.previous = airport
Q.enqueue(neighbor)



Can we modify BFS?
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function distance(G, source):
//Input: G: graph, source: vertex

   //Output: Nothing
   //Purpose: decorate each vertex with the lowest cost of
   //         a path from the source.
   
   for every node in G:

node.distance = infinity
node.previous = null

   Q = new Queue()
   source.distance = 0
   source.visited = true
   Q.enqueue(source)
   while Q is not empty:

node = Q.dequeue()   
for neighbor in nodes’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
neighbor.distance = node.distance + 1
neighbor.previous = node
Q.enqueue(neighbor)



Can we modify BFS?
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function distance(G, source):
//Input: G: graph, source: vertex

   //Output: Nothing
   //Purpose: decorate each vertex with the lowest cost of
   //         a path from the source.
   
   for every node in G:

node.distance = infinity
node.previous = null

   Q = new Queue()
   source.distance = 0
   source.visited = true
   Q.enqueue(source)
   while Q is not empty:

node = Q.dequeue()   
for neighbor in nodes’s adjacent nodes:

if node.distance + cost(node, neighbor) < neighbor.distance:
neighbor.visited = true
neighbor.distance = node.distance + 1
neighbor.previous = node
Q.enqueue(neighbor)



Can we modify BFS?
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function distance(G, source):
//Input: G: graph, source: vertex

   //Output: Nothing
   //Purpose: decorate each vertex with the lowest cost of
   //         a path from the source.
   
   for every node in G:

node.distance = infinity
node.previous = null

   Q = new Queue()
   source.distance = 0
   source.visited = true
   Q.enqueue(source)
   while Q is not empty:

node = Q.dequeue()   
for neighbor in nodes’s adjacent nodes:

if node.distance + cost(node, neighbor) < neighbor.distance:
   neighbor.distance = node.distance + cost(node, neighbor)
   neighbor.previous = node

somehow add neighbor to Q at the right place



Shortest Path
‣ Use a priority queue!
‣ where priorities are total distances from source
‣ By visiting nodes in order returned by 
removeMin()… 

‣ …you visit nodes in order of how far they are from 
source

‣ You guarantee shortest path to node because…
‣ …you don’t explore a node until all nodes closer to 

source have already been explored
28



Dijkstra’s Algorithm
‣ The algorithm is as follows:
‣ Decorate source with distance 0 & all other nodes with ∞
‣ Add all nodes to priority queue w/ distance as priority
‣ While the priority queue isn’t empty

‣ Remove node from queue with minimal priority

‣ Update distances of the removed node’s neighbors if distances 
decreased 

‣ When algorithm terminates, every node is decorated 
with minimal cost from source
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Dijkstra’s Algorithm Example
‣ Step 1 

‣ Label source w/ dist. 0 

‣ Label other vertices w/ dist. ∞ 

‣ Add all nodes to Q

‣ Step 2
‣ Remove node with min. priority 

from Q (S in this example). 
‣ Calculate dist. from source to 

removed node’s neighbors…
‣ …by adding adjacent edge 

weights to S’s dist.
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Dijkstra’s Algorithm Example
‣ Step 3

‣ While Q isn’t empty, 
‣ repeat previous step 
‣ removing A this time

‣ Priorities of nodes in Q may have 
to be updated 
‣ ex: B’ s priority

‣ Step 4 
‣ Repeat again by removing vertex B 
‣ Update distances that are shorter 

using this path than before 
‣ ex: C now has a distance 6 not 10
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Dijkstra’s Algorithm Example
‣ Step 5
‣ Repeat
‣ this time removing C

‣ Step 6 
‣ After removing D…
‣ …every node has been 

visited…
‣ …and decorated w/ 

shortest dist. to source
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Dijkstra’s Example 2
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Dijkstra’s Example
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Dijkstra’s Example
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Dijkstra’s Example
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Dijkstra’s Example
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Dijkstra’s Algorithm
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‣ Comes up with an optimal solution
‣ shortest path to each node

‣ Like many optimization algorithms, uses dynamic 
programming
‣ overlapping subproblems (distances to nodes)
‣ solved in a particular order (closest first)

‣ Dijkstra’s is greedy

‣ at each step, considers next closest node
‣ Greedy algorithms not always optimal, usually fast



Dijkstra Pseudo-Code
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function dijkstra(G, s):
   // Input: graph G with vertices V, and source s
   // Output: Nothing
   // Purpose: Decorate nodes with shortest distance from s
   for v in V:
     v.dist = infinity  // Initialize distance decorations
     v.prev = null      // Initialize previous pointers to null
   s.dist = 0         // Set distance to start to 0

   PQ = PriorityQueue(V)    // Use v.dist as priorities
   while PQ not empty:
      u = PQ.removeMin()
      for all edges (u, v): //each edge coming out of u
         if u.dist + cost(u, v) < v.dist: // cost() is weight
            v.dist = u.dist + cost(u,v)   // Replace as necessary
            v.prev = u // Maintain pointers for path
            PQ.decreaseKey(v, v.dist)
 



Dijkstra Runtime w/ Heap
‣ If PQ implemented with Heap
‣ insert( ) is O(log|V|)
‣ you may need to upheap

‣ removeMin( ) is O(log|V|)
‣ you may need to downheap

‣ decreaseKey() is O(log|V|)
‣ assume we have dictionary that maps vertex to heap entry in 
O(log|V|) time (so no need to scan heap to find entry)

‣ you may need to upheap after decreasing the key
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Dijkstra Runtime w/ Heap

41

function dijkstra(G, s):
   for v in V:            
    v.dist = infinity 

     v.prev = null     
   s.dist = 0        

   PQ = PriorityQueue(V)   
   while PQ not empty:     
      u = PQ.removeMin()   
      for all edges (u, v):
         if v.dist > u.dist + cost(u, v):
            v.dist = u.dist + cost(u,v)  
            v.prev = u 
            PQ.decreaseKey(v, v.dist)   

O(|V|)

O(|V|)
O(log|V|)

O(log|V|)

O(|E|)
total

O(|V|log|V|)



Dijkstra Runtime w/ Heap
‣ If PQ implemented with Heap

‣ Note
‣ though the O(|E|) loop is nested in the O(|V|) loop

‣ we visit each edge at most twice rather than |V| times

‣ That’s why while loop is
42
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Dijkstra isn’ t perfect!
‣ We can find shortest path on weighted graph in 
‣ O((|V|+|E|)×log|V|)

‣ or can we…

‣ Dijkstra fails with negative edge weights

‣ Returns [A,C,D] when it should return [A,B,C,D]
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Negative Edge Weights
‣ Negative edge weights are problem for Dijkstra
‣ But negative cycles are even worse!
‣ because there is no true shortest path!
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Bellman-Ford Algorithm
‣ Algorithm that handles graphs w/ neg. edge 

weights
‣ Similar to Dijkstra’s but more robust
‣ Returns same output as Dijkstra’s for any graph w/ 

only positive edge weights (but runs slower)
‣ Returns correct shortest paths for graphs w/ neg. 

edge weights
‣ How: not greedy!
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