
Breadth-first Search
and

Shortest Paths in Graphs
CS16: Introduction to Data Structures & Algorithms

Summer 2021

BFT and DFT
‣ Remember BFT and DFT on trees?
‣ We can also do them on graphs
‣ a tree is just a special kind of graph
‣ often used to find certain values in graphs

2

Breadth First Traversal: Tree vs. Graph

3

function treeBFT(root):
//Input: Root node of tree
//Output: Nothing
Q = new Queue()
Q.enqueue(root)
while Q is not empty:

node = Q.dequeue()
doSomething(node)
enqueue node’s children

function graphBFT(start):
//Input: start vertex
//Output: Nothing
Q = new Queue()
start.visited = true
Q.enqueue(start)
while Q is not empty:

node = Q.dequeue()
doSomething(node)
for neighbor in adj nodes:

if not neighbor.visited:
neighbor.visited = true
Q.enqueue(neighbor)

doSomething() could
print, add to list, decorate
node etc…

Mark nodes as visited otherwise you will loop
forever!

Applications: Flight Paths Exist
‣ Given undirected graph with airports & flights
‣ is it possible to fly from one airport to another?

‣ Strategy
‣ use breadth first search starting at first node
‣ and determine if ending airport is ever visited

4

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

5

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

6

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

7

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

‣ Yes! but how do we do it with code?

8

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Flight Paths Exist Pseudo-Code

9

function pathExists(from, to):
//Input: from: vertex, to: vertex
//Output: true if path exists, false otherwise
Q = new Queue()
from.visited = true
Q.enqueue(from)
while Q is not empty:

airport = Q.dequeue()
if airport == to:

return true
for neighbor in airport’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
Q.enqueue(neighbor)

return false

Applications: Flight Layovers
‣ Given undirected graph with airports & flights
‣ decorate vertices w/ least number of

stops from a given source

‣ if no way to get to a an airport decorate w/ ∞
‣ Strategy
‣ decorate each node w/ initial ‘stop value’ of ∞
‣ use breadth first traversal to decorate each node…
‣ …w/ ‘stop value’ of one greater than its previous value

10

Flight Layovers Pseudo-Code

11

function numStops(G, source):
//Input: G: graph, source: vertex

 //Output: Nothing
 //Purpose: decorate each vertex with the lowest number of
 // layovers from source.

 for every node in G:

node.stops = infinity

 Q = new Queue()
 source.stops = 0
 source.visited = true
 Q.enqueue(source)
 while Q is not empty:

airport = Q.dequeue()
for neighbor in airport’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
neighbor.stops = airport.stops + 1
Q.enqueue(neighbor)

Flight Layovers Example

12

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

∞ ∞

∞

∞

∞

∞

∞

∞

∞

∞

Flight Layovers Example

13

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

∞ ∞

∞

∞

∞

∞

∞

∞

∞

∞
0

✓

HNL

1

✓

LAX

2 ✓

SFO

2

✓

DFW

2✓

ORD

3 ✓

PVD

3
✓

LGA

3

✓

MIA

What if we want a path?
‣ numStops gives us the distance
‣ Want to know how to get from (e.g.) HNL to

LGA
‣ Strategy: at each node we reach, record the

node we used to get there

14

Flight Layovers Pseudo-Code

15

function numStops(G, source):
//Input: G: graph, source: vertex

 //Output: Nothing
 //Purpose: decorate each vertex with the lowest number of
 // layovers from source.

 for every node in G:

node.stops = infinity
node.previous = null

 Q = new Queue()
 source.stops = 0
 source.visited = true
 Q.enqueue(source)
 while Q is not empty:

airport = Q.dequeue()
for neighbor in airport’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
neighbor.stops = airport.stops + 1
neighbor.previous = airport
Q.enqueue(neighbor)

Flight paths

16

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

∞ ∞

0
1

2

2

2

3

3

3
(HNL)

(LAX) (LAX)

(LAX)

(ORD)

(DFW)

(DFW)

Single Source Shortest Paths
‣ SSSP problem: find shortest paths to all other

nodes in a graph from a particular starting node
‣ Graph can be directed or undirected (we’ll

present on undirected graphs)
‣ Edges can have weights

17

Train trip!

18

ATL

SF

LA

CLE

DC

PHL

NYC

PVD

PHX

STL

CHI

10
10

35

15

1010

10 20

15

5

10

20

15

15
10

10

Start

End
20

Train trip!

19

ATL

SF

LA

CLE

DC

PHL

NYC

PVD

PHX

STL

CHI

10
10

35

15

1010

10 20

15

5

10

20

15

15
10

10

Start

End
20

What’s the trip between PVD->SF
that makes fewest stops?

Train trip!

20

ATL

SF

LA

CLE

DC

PHL

NYC

PVD

PHX

STL

CHI

10
10

35

15

1010

10 20

15

5

10

20

15

15
10

10

Start

End
20

What’s the trip between PVD->SF
that makes fewest stops?

Train trip!

21

ATL

SF

LA

CLE

DC

PHL

NYC

PVD

PHX

STL

CHI

10
10

35

15

1010

10 20

15

10

20

15

15
10

10

Start

End
20

What’s the
cheapest trip?

5

Train trip!

22

ATL

SF

LA

CLE

DC

PHL

NYC

PVD

PHX

STL

CHI

10
10

35

15

1010

10 20

15

10

20

15

15
10

10

Start

End
20

What’s the
cheapest trip?

5

BFS ignores edge weights!

Shortest Path
‣ Why does BFS work with unit edges?
‣ Nodes visited in order of total distance from source

‣ We need way to do the same even when edges
have distinct weights!

23

Can we modify BFS?

24

function distance(G, source):
//Input: G: graph, source: vertex

 //Output: Nothing
 //Purpose: decorate each vertex with the lowest cost of
 // a path from the source.

 for every node in G:

node.stops = infinity
node.previous = null

 Q = new Queue()
 source.stops = 0
 source.visited = true
 Q.enqueue(source)
 while Q is not empty:

airport = Q.dequeue()
for neighbor in airport’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
neighbor.stops = airport.stops + 1
neighbor.previous = airport
Q.enqueue(neighbor)

Can we modify BFS?

25

function distance(G, source):
//Input: G: graph, source: vertex

 //Output: Nothing
 //Purpose: decorate each vertex with the lowest cost of
 // a path from the source.

 for every node in G:

node.distance = infinity
node.previous = null

 Q = new Queue()
 source.distance = 0
 source.visited = true
 Q.enqueue(source)
 while Q is not empty:

node = Q.dequeue()
for neighbor in nodes’s adjacent nodes:

if not neighbor.visited:
neighbor.visited = true
neighbor.distance = node.distance + 1
neighbor.previous = node
Q.enqueue(neighbor)

Can we modify BFS?

26

function distance(G, source):
//Input: G: graph, source: vertex

 //Output: Nothing
 //Purpose: decorate each vertex with the lowest cost of
 // a path from the source.

 for every node in G:

node.distance = infinity
node.previous = null

 Q = new Queue()
 source.distance = 0
 source.visited = true
 Q.enqueue(source)
 while Q is not empty:

node = Q.dequeue()
for neighbor in nodes’s adjacent nodes:

if node.distance + cost(node, neighbor) < neighbor.distance:
neighbor.visited = true
neighbor.distance = node.distance + 1
neighbor.previous = node
Q.enqueue(neighbor)

Can we modify BFS?

27

function distance(G, source):
//Input: G: graph, source: vertex

 //Output: Nothing
 //Purpose: decorate each vertex with the lowest cost of
 // a path from the source.

 for every node in G:

node.distance = infinity
node.previous = null

 Q = new Queue()
 source.distance = 0
 source.visited = true
 Q.enqueue(source)
 while Q is not empty:

node = Q.dequeue()
for neighbor in nodes’s adjacent nodes:

if node.distance + cost(node, neighbor) < neighbor.distance:
 neighbor.distance = node.distance + cost(node, neighbor)
 neighbor.previous = node

somehow add neighbor to Q at the right place

Shortest Path
‣ Use a priority queue!
‣ where priorities are total distances from source
‣ By visiting nodes in order returned by
removeMin()…

‣ …you visit nodes in order of how far they are from
source

‣ You guarantee shortest path to node because…
‣ …you don’t explore a node until all nodes closer to

source have already been explored
28

Dijkstra’s Algorithm
‣ The algorithm is as follows:
‣ Decorate source with distance 0 & all other nodes with ∞
‣ Add all nodes to priority queue w/ distance as priority
‣ While the priority queue isn’t empty

‣ Remove node from queue with minimal priority

‣ Update distances of the removed node’s neighbors if distances
decreased

‣ When algorithm terminates, every node is decorated
with minimal cost from source

29

Dijkstra’s Algorithm Example
‣ Step 1

‣ Label source w/ dist. 0

‣ Label other vertices w/ dist. ∞

‣ Add all nodes to Q

‣ Step 2
‣ Remove node with min. priority

from Q (S in this example).
‣ Calculate dist. from source to

removed node’s neighbors…
‣ …by adding adjacent edge

weights to S’s dist.
30

S

B

A D

C
7

8

2

3 2

1

5

54
0

∞

∞

∞

∞

S

B

A D

C
7

8

2

3 2

1

5

54
0

7

2

∞

∞

Dijkstra’s Algorithm Example
‣ Step 3

‣ While Q isn’t empty,
‣ repeat previous step
‣ removing A this time

‣ Priorities of nodes in Q may have
to be updated
‣ ex: B’ s priority

‣ Step 4
‣ Repeat again by removing vertex B
‣ Update distances that are shorter

using this path than before
‣ ex: C now has a distance 6 not 10

31

S

B

A D

C
7

8

2

3 2

1

5

54
0

5

2

10

7

S

B

A D

C
7

8

2

3 2

1

5

54
0

5

2

6

7

Dijkstra’s Algorithm Example
‣ Step 5
‣ Repeat
‣ this time removing C

‣ Step 6
‣ After removing D…
‣ …every node has been

visited…
‣ …and decorated w/

shortest dist. to source
32

S

B

A D

C
7

8

2

3 2

1

5

54
0

5

2

6

7

S

B

A D

C
7

8

2

3 2

1

5

54
0

5

2

6

7

Dijkstra’s Example 2

33

A

B

C

D

E

4

2

3 1

2

3
1

5

4

A B C D E
0 ∞ ∞ ∞ ∞

Dijkstra’s Example

34

A

B

C

D

E

4

2

3 1

2

3
1

5

4

A B C D E
0 4 2 ∞ ∞

Dijkstra’s Example

35

A

B

C

D

E

4

2

3 1

2

3
1

5

4

A B C D E
0 3 2 6 7

Dijkstra’s Example

36

A

B

C

D

E

4

2

3 1

2

3
1

5

4

A B C D E
0 3 2 5 6

Dijkstra’s Example

37

A

B

C

D

E

4

2

3 1

2

3
1

5

4

A B C D E
0 3 2 5 6

Dijkstra’s Algorithm

38

‣ Comes up with an optimal solution
‣ shortest path to each node

‣ Like many optimization algorithms, uses dynamic
programming
‣ overlapping subproblems (distances to nodes)
‣ solved in a particular order (closest first)

‣ Dijkstra’s is greedy

‣ at each step, considers next closest node
‣ Greedy algorithms not always optimal, usually fast

Dijkstra Pseudo-Code

39

function dijkstra(G, s):
 // Input: graph G with vertices V, and source s
 // Output: Nothing
 // Purpose: Decorate nodes with shortest distance from s
 for v in V:
 v.dist = infinity // Initialize distance decorations
 v.prev = null // Initialize previous pointers to null
 s.dist = 0 // Set distance to start to 0

 PQ = PriorityQueue(V) // Use v.dist as priorities
 while PQ not empty:
 u = PQ.removeMin()
 for all edges (u, v): //each edge coming out of u
 if u.dist + cost(u, v) < v.dist: // cost() is weight
 v.dist = u.dist + cost(u,v) // Replace as necessary
 v.prev = u // Maintain pointers for path
 PQ.decreaseKey(v, v.dist)

Dijkstra Runtime w/ Heap
‣ If PQ implemented with Heap
‣ insert() is O(log|V|)
‣ you may need to upheap

‣ removeMin() is O(log|V|)
‣ you may need to downheap

‣ decreaseKey() is O(log|V|)
‣ assume we have dictionary that maps vertex to heap entry in
O(log|V|) time (so no need to scan heap to find entry)

‣ you may need to upheap after decreasing the key

40

Dijkstra Runtime w/ Heap

41

function dijkstra(G, s):
 for v in V:
 v.dist = infinity

 v.prev = null
 s.dist = 0

 PQ = PriorityQueue(V)
 while PQ not empty:
 u = PQ.removeMin()
 for all edges (u, v):
 if v.dist > u.dist + cost(u, v):
 v.dist = u.dist + cost(u,v)
 v.prev = u
 PQ.decreaseKey(v, v.dist)

O(|V|)

O(|V|)
O(log|V|)

O(log|V|)

O(|E|)
total

O(|V|log|V|)

Dijkstra Runtime w/ Heap
‣ If PQ implemented with Heap

‣ Note
‣ though the O(|E|) loop is nested in the O(|V|) loop

‣ we visit each edge at most twice rather than |V| times

‣ That’s why while loop is
42

O(|V |+ |V | log |V |+|V | log |V |+ |E| log |V |)
= O(|V |+ |V | log |V |+ |E| log |V |)

= O

✓�
|V |+ |E|

�
· log |V |

◆

<latexit sha1_base64="Cl1sjm1oLBznX+bY+VxlwXucBE8=">AAACbnicbVHLSgMxFM2Mr1pftS5cVDFYlBahzIigLoSiCO6sYFuhKSWTpmNoZjIkGaG03fqB7vwHN/6BmekI9XEh4dxzzyHJiRdxprTjvFv2wuLS8kpuNb+2vrG5VdgutpSIJaFNIriQTx5WlLOQNjXTnD5FkuLA47TtDW+SefuFSsVE+KhHEe0G2A/ZgBGsDdUrvN5XJq0JPIFmR1z4s+b4Rze5/W6qEKH88RX81zQnQwimMuQx368ke2I4SRQGVxHpC51pU0m1Vyg7NSct+Be4GSiDrBq9whvqCxIHNNSEY6U6rhPp7hhLzQin0zyKFY0wGWKfdgwMcUBVd5zmNYVHhunDgZBmhRqm7LxjjAOlRoFnlAHWz+r3LCH/m3ViPbjojlkYxZqGZHbQIOZQC5iED/tMUqL5yABMJDN3heQZS0y0+aK8CcH9/eS/oHlau6y5D2fl+nWWRg6UwCGoABecgzq4Aw3QBAR8WEWrZO1Zn/auvW8fzKS2lXl2wI+yK18M5rhE</latexit><latexit sha1_base64="Cl1sjm1oLBznX+bY+VxlwXucBE8=">AAACbnicbVHLSgMxFM2Mr1pftS5cVDFYlBahzIigLoSiCO6sYFuhKSWTpmNoZjIkGaG03fqB7vwHN/6BmekI9XEh4dxzzyHJiRdxprTjvFv2wuLS8kpuNb+2vrG5VdgutpSIJaFNIriQTx5WlLOQNjXTnD5FkuLA47TtDW+SefuFSsVE+KhHEe0G2A/ZgBGsDdUrvN5XJq0JPIFmR1z4s+b4Rze5/W6qEKH88RX81zQnQwimMuQx368ke2I4SRQGVxHpC51pU0m1Vyg7NSct+Be4GSiDrBq9whvqCxIHNNSEY6U6rhPp7hhLzQin0zyKFY0wGWKfdgwMcUBVd5zmNYVHhunDgZBmhRqm7LxjjAOlRoFnlAHWz+r3LCH/m3ViPbjojlkYxZqGZHbQIOZQC5iED/tMUqL5yABMJDN3heQZS0y0+aK8CcH9/eS/oHlau6y5D2fl+nWWRg6UwCGoABecgzq4Aw3QBAR8WEWrZO1Zn/auvW8fzKS2lXl2wI+yK18M5rhE</latexit><latexit sha1_base64="Cl1sjm1oLBznX+bY+VxlwXucBE8=">AAACbnicbVHLSgMxFM2Mr1pftS5cVDFYlBahzIigLoSiCO6sYFuhKSWTpmNoZjIkGaG03fqB7vwHN/6BmekI9XEh4dxzzyHJiRdxprTjvFv2wuLS8kpuNb+2vrG5VdgutpSIJaFNIriQTx5WlLOQNjXTnD5FkuLA47TtDW+SefuFSsVE+KhHEe0G2A/ZgBGsDdUrvN5XJq0JPIFmR1z4s+b4Rze5/W6qEKH88RX81zQnQwimMuQx368ke2I4SRQGVxHpC51pU0m1Vyg7NSct+Be4GSiDrBq9whvqCxIHNNSEY6U6rhPp7hhLzQin0zyKFY0wGWKfdgwMcUBVd5zmNYVHhunDgZBmhRqm7LxjjAOlRoFnlAHWz+r3LCH/m3ViPbjojlkYxZqGZHbQIOZQC5iED/tMUqL5yABMJDN3heQZS0y0+aK8CcH9/eS/oHlau6y5D2fl+nWWRg6UwCGoABecgzq4Aw3QBAR8WEWrZO1Zn/auvW8fzKS2lXl2wI+yK18M5rhE</latexit><latexit sha1_base64="Cl1sjm1oLBznX+bY+VxlwXucBE8=">AAACbnicbVHLSgMxFM2Mr1pftS5cVDFYlBahzIigLoSiCO6sYFuhKSWTpmNoZjIkGaG03fqB7vwHN/6BmekI9XEh4dxzzyHJiRdxprTjvFv2wuLS8kpuNb+2vrG5VdgutpSIJaFNIriQTx5WlLOQNjXTnD5FkuLA47TtDW+SefuFSsVE+KhHEe0G2A/ZgBGsDdUrvN5XJq0JPIFmR1z4s+b4Rze5/W6qEKH88RX81zQnQwimMuQx368ke2I4SRQGVxHpC51pU0m1Vyg7NSct+Be4GSiDrBq9whvqCxIHNNSEY6U6rhPp7hhLzQin0zyKFY0wGWKfdgwMcUBVd5zmNYVHhunDgZBmhRqm7LxjjAOlRoFnlAHWz+r3LCH/m3ViPbjojlkYxZqGZHbQIOZQC5iED/tMUqL5yABMJDN3heQZS0y0+aK8CcH9/eS/oHlau6y5D2fl+nWWRg6UwCGoABecgzq4Aw3QBAR8WEWrZO1Zn/auvW8fzKS2lXl2wI+yK18M5rhE</latexit>

O

✓�
V log |V |

�
+
�
|E| log |V |

�◆

Dijkstra isn’ t perfect!
‣ We can find shortest path on weighted graph in
‣ O((|V|+|E|)×log|V|)

‣ or can we…

‣ Dijkstra fails with negative edge weights

‣ Returns [A,C,D] when it should return [A,B,C,D]
43

D

A

B

C

2

-7

5
8

Start
End

Negative Edge Weights
‣ Negative edge weights are problem for Dijkstra
‣ But negative cycles are even worse!
‣ because there is no true shortest path!

44

D

A

B

C

-10

5

15
3

Start
End

Bellman-Ford Algorithm
‣ Algorithm that handles graphs w/ neg. edge

weights
‣ Similar to Dijkstra’s but more robust
‣ Returns same output as Dijkstra’s for any graph w/

only positive edge weights (but runs slower)
‣ Returns correct shortest paths for graphs w/ neg.

edge weights
‣ How: not greedy!

45

