Sorting & Master Theorem

CS16: Introduction to Data Structures & Algorithms
Spring 2019
Outline

‣ Motivation

‣ Quadratic Sorting
 ‣ Selection sort
 ‣ Insertion sort

‣ Linearithmic Sorting
 ‣ Merge Sort
 ‣ Master Theorem
 ‣ Quick Sort

‣ Comparative sorting lower bound

‣ Linear Sorting
 ‣ Radix Sort
The Problem

- Turn this

\[
\begin{array}{cccccccccccccccc}
10 & 19 & 7 & 4 & 3 & 21 & 10 & 23 & 24 & 18 & 1 & 8 & 23 & 1 & 12
\end{array}
\]

- Into this

\[
\begin{array}{cccccccccccccccc}
1 & 1 & 3 & 4 & 7 & 8 & 10 & 10 & 12 & 18 & 19 & 21 & 23 & 23 & 24
\end{array}
\]

- as efficiently as possible
Sorting is Serious!

Microsoft Research team shatters data sorting record, wrenches trophy from Yahoo

Alexis Santos
05.22.12

59
Shares
Sorting Competition

- Sort Benchmark (sortbenchmark.org)
- Started by Jim Gray
 - Research scientist at Microsoft Research
 - Winner of 1998 Turing Award for contributions to databases
- Tencent Sort from Tencent Corp. (2016)
 - 100 TB in 134 seconds
 - 37 TB in 1 minute
Why?

- Why do we care so much about sorting?
- Rule of thumb:
 - “good things happen when data is sorted”
 - we can find things faster (e.g., using binary search)
Sorting Algorithms

- There are many ways to sort arrays
 - Iterative vs. recursive
 - In-place vs. not-in-place
 - Comparison-based vs. non-comparative

- In-place algorithms
 - Transform data structure with small amount of extra storage (i.e., $O(1)$)
 - For sorting: array is overwritten by output instead of creating a new array

- Most sorting algorithms in 16 are comparison-based
 - Main operation is comparison
 - But not all (e.g., Radix sort)
“In-Placeness”

- Reversing an array

```
function reverse(A):
    n = A.length
    B = array of length n
    for i = 0 to n – 1:
        B[n-1-i] = A[i]
    return B
```

```
function reverse(A):
    n = A.length
    for i = 0 to n/2:
        temp = A[i]
        A[n-1-i] = temp
    return statement not needed
```

Not in-place!

in-place

Return statement not needed
Properties of In-Place Solutions

- Harder to write 😞
- Use less memory 😞
- Even harder to write for recursive algorithms 😞
- Tradeoff between simplicity and efficiency
Outline

- Motivation
- Quadratic Sorting
 - Selection sort
 - Insertion sort
- Linearithmic Sorting
 - Merge Sort
 - Master Theorem
 - Quick Sort
- Comparative sorting lower bound
- Linear Sorting
 - Radix Sort
Selection Sort

- Usually iterative and in-place
- Divides input array into two logical parts
 - elements already sorted
 - elements that still need to be sorted
- Selects smallest element & places it at index 0
 - then selects second smallest & places it in index 1
 - then the third smallest at index 2, etc..
Selection Sort

- **Advantages**
 - Very simple
 - Memory efficient if in-place (swaps elements in array)

- **Disadvantages**
 - Slow: $O(n^2)$
Selection Sort

- Iterate through positions
- At each position
 - store smallest element from remaining set
Selection Sort

function selection_sort(A):
 n = A.length
 for i = 0 to n-2:
 min = argmin(A[i:n-1])
 swap A[i] with A[min]
Outline

- Motivation
- Quadratic Sorting
 - Selection sort
 - Insertion sort
- Linearithmic Sorting
 - Merge Sort
 - Master Theorem
 - Quick Sort
- Comparative sorting lower bound
- Linear Sorting
 - Radix Sort
Insertion Sort

- Usually iterative and in-place
- Compares each item w/ all items before it…
 - …and inserts it into correct position
- Advantages
 - Works really well if items partially sorted
 - Memory efficient if in-place (swaps elements in array)
- Disadvantages
 - Slow: $O(n^2)$
Insertion Sort

- Compares each item with all items before it...
- ...and inserts it into correct position

Note: 23 > 22 so don't need to keep checking since rest is already sorted
function `insertion_sort(A)`:
 n = A.length
 for i = 1 to n-1:
 for j = i down to 1:
 if a[j] < a[j-1]:
 swap a[j] and a[j-1]
 else:
 break # out of the inner for loop
 # this prevents double checking the
 # already sorted portion
Outline

‣ Motivation

‣ Quadratic Sorting
 › Selection sort
 › Insertion sort

‣ Linearithmic Sorting
 › **Merge Sort**
 › Master Theorem
 › Quick Sort

‣ Comparative sorting lower bound

‣ Linear Sorting
 › Radix Sort
Divide & Conquer

- Algorithmic design paradigm
 - divide: divide input S into disjoint subsets $S_1, ..., S_k$
 - recur: solve sub-problems on $S_1, ..., S_k$
 - conquer: combine solutions for $S_1, ..., S_k$ into solution for S
- Base case is usually sub-problem of size 1 or 0
Merge Sort

- Sorting algorithm based on divide & conquer
- Like quadratic sorts
 - comparative
- Unlike quadratic sorts
 - recursive
 - linearithmic $O(n \log n)$
Merge Sort

- Merge sort on n-element sequence S
 - divide: divide S into disjoint subsets \(S_1 \) and \(S_2 \)
 - recur: recursively merge sort \(S_1 \) and \(S_2 \)
 - conquer: merge \(S_1 \) and \(S_2 \) into sorted sequence

- Suppose we want to sort
 - 7, 2, 9, 4, 3, 8, 6, 1
Merge Sort Recursion Tree

7 2 9 4 | 3 8 6 1

...
Merge Sort Recursion Tree

7 2 9 4 | 3 8 6 1

7 2 | 9 4

1 2 3 4 6 7 8 9
Merge Sort Recursion Tree

7 2 9 4 | 3 8 6 1

7 2 | 9 4

7 2 → 2 7
7 → 7 2 → 2

9 4 → 4 9
3 8 6 1
3 → 3 8 → 8 6 → 6 1 → 1
Merge Sort Recursion Tree
Merge Sort Recursion Tree
Merge Sort Recursion Tree

7 2 9 4 | 3 8 6 1 → 1 2 3 4 6 7 8 9

7 2 | 9 4 → 2 4 7 9

7 2 → 2 7

9 4 → 4 9

3 8 → 3 8

6 1 → 1 6
function `mergeSort(A)`:
 n = A.length
 if n <= 1:
 return A
 mid = n/2
 left = mergeSort(A[0...mid-1])
 right = mergeSort(A[mid...n-1])
 return merge(left, right)
function merge(A, B):
 result = []
aIndex = 0
bIndex = 0
while aIndex < A.length and bIndex < B.length:
 if A[aIndex] <= B[bIndex]:
 result.append(A[aIndex])
aIndex++
 else:
 result.append(B[bIndex])
bIndex++
if aIndex < A.length:
 result = result + A[aIndex:end]
if bIndex < B.length:
 result = result + B[bIndex:end]
return result
Merge Sort

Activity #1

2 min
Merge Sort

Activity #1

2 min
Merge Sort

Activity #1

1 min
Merge Sort

Activity #1
Merge Sort Recurrence Relation

- Merge sort steps
 - Recursively merge sort left half
 - Recursively merge sort right half
 - Merge both halves

- $T(n)$: time to merge sort input of size n
 - $T(n) = \text{step 1} + \text{step 2} + \text{step 3}$
 - Steps 1 & 2 are merge sort on half input so $T(n/2)$
 - Step 3 is $O(n)$
Merge Sort Recurrence Relation

- General case
 \[T(n) = T \left(\frac{n}{2} \right) + T \left(\frac{n}{2} \right) + O(n) = 2 \cdot T \left(\frac{n}{2} \right) + O(n) \]

- Base case
 \[T(1) = c \]
Merge Sort Recurrence Relation

- Plug & chug

\[
T(1) = c_1 \\
T(2) = 2 \cdot T(1) + 2 = 2c_1 + 2 \\
T(4) = 2 \cdot T(2) + 4 = 2(2c_1 + 2)4 = 4c_1 + 8 \\
T(8) = 2 \cdot T(4) + 8 = 2(4c_1 + 8) + 8 = 8c_1 + 24 \\
T(16) = 2 \cdot T(8) + 16 = 2(8c_1 + 24) + 16 = 16c_1 + 64
\]

- Solution

\[
T(n) = nc_1 + n \log n = O(n \log n)
\]
Analysis of Merge Sort

- Merge sort recursive tree is perfect binary tree so has height $O(\log n)$
- At each depth k: need to merge 2^{k+1} sequences of size $n/2^{k+1}$
 - work at each depth is $O(n)$

<table>
<thead>
<tr>
<th>depth</th>
<th>sequenc</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>n/2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>n/4</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>n/4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>k</td>
<td>2^{k+1}</td>
<td>$n/2^{k+1}$</td>
</tr>
</tbody>
</table>
Analysis of Merge Sort

- To determine that Merge sort was $O(n \log n)$
 - Use plug and chug to guess a solution
 - Prove that $O(n \log n)$ is correct (e.g., using induction)
- Can be a lot of work
Outline

- Motivation
- Quadratic Sorting
 - Selection sort
 - Insertion sort
- Linearithmic Sorting
 - Merge Sort
 - **Master Theorem**
 - Quick Sort
- Comparative sorting lower bound
- Linear Sorting
 - Radix Sort
The Master Theorem

- Solves large class of recurrence relations
 - we will learn how to use it but not its proof
 - See Dasgupta et al. p. 58-60 for proof
- Let $T(n)$ be a monotonically-increasing function of form
 \[T(n) = a \cdot T \left(\frac{n}{b} \right) + \Theta(n^d) \]
 - a: number of sub-problems
 - n/b: size of each sub-problem
 - n^d: work to prepare sub-problems & combine their solutions
The Master Theorem

- If $a \geq 1$, $b > 1$, $d \geq 0$, then
 - if $a < b^d$ then $T(n) = \Theta(n^d)$
 - if $a = b^d$ then $T(n) = \Theta(n^d \log n)$
 - if $a > b^d$ then $T(n) = \Theta(n^{\log_b a})$

- Applying Master Theorem to merge sort
 - Recurrence relation of merger sort: $T(n) = 2T(n/2) + O(n^1)$
 - $a = 2$, $b = 2$ and $d = 1$ so $a = b^d$
 - and $T(n) = \Theta(n^d \log n)$
 $= \Theta(n^1 \log n)$
 $= \Theta(n \log n)$
Master Theorem

\[T(n) = a \cdot T \left(\frac{n}{b} \right) + \Theta(n^d) \]

- \(T(n) = \Theta(n^d) \) if \(a < b^d \)
- \(T(n) = \Theta(n^d \log n) \) if \(a = b^d \)
- \(T(n) = \Theta(n^{\log_b a}) \) if \(a > b^d \)

Activity #2+3
Master Theorem

\[T(n) = a \cdot T\left(\frac{n}{b}\right) + \Theta(n^d) \]

- \(T(n) = \Theta(n^d) \) if \(a < b^d \)
- \(T(n) = \Theta(n^d \log n) \) if \(a = b^d \)
- \(T(n) = \Theta(n^{\log_b a}) \) if \(a > b^d \)
Master Theorem

\[T(n) = a \cdot T \left(\frac{n}{b} \right) + \Theta(n^d) \]

- \(T(n) = \Theta(n^d) \) if \(a < b^d \)
- \(T(n) = \Theta(n^d \log n) \) if \(a = b^d \)
- \(T(n) = \Theta(n^{\log_b a}) \) if \(a > b^d \)

Activity #2+3
Master Theorem

\[T(n) = a \cdot T \left(\frac{n}{b} \right) + \Theta(n^d) \]

- \(T(n) = \Theta(n^d) \) if \(a < b^d \)
- \(T(n) = \Theta(n^d \log n) \) if \(a = b^d \)
- \(T(n) = \Theta(n^{\log_b a}) \) if \(a > b^d \)

Activity #2+3
Outline

- Motivation
- Quadratic Sorting
 - Selection sort
 - Insertion sort
- Linearithmic Sorting
 - Merge Sort
 - Master Theorem
 - **Quick Sort**
- Comparative sorting lower bound
- Linear Sorting
 - Radix Sort
Quicksort

- Randomized sorting algorithm
- Based on divide-and-conquer
 - divide: pick random element (called pivot) and partition set into
 - **L**: elements less than \(x \)
 - **E**: elements equal to \(x \)
 - **G**: elements larger than \(x \)
 - recur: quicksort L and G
 - conquer: join L, E and G
Quicksort

Activity #4

2 min
Quicksort

1 min

Activity #4
Quicksort

Activity #4
Quicksort Example

random pivot

7 2 9 4 3 7 6 1
Quicksort Example

7 2 9 4 3 7 6 1

2 4 3 1

58
Quicksort Example

7 2 9 4 3 7 6 1

2 4 3 1

1 → 1

59
Quicksort Example
Quicksort Example
Quicksort Example

7 2 9 4 3 7 6 1

2 4 3 1

1 → 1

4 3 → 3 4

4 → 4
Quicksort Example
Quicksort Example

7 2 9 4 3 7 6 1

2 4 3 1 → 1 2 3 4

1 → 1

4 3 → 3 4

4 → 4

7 9 7
Quicksort Example

7 2 9 4 3 7 6 1

2 4 3 1 → 1 2 3 4

1 → 1

4 3 → 3 4

4 → 4

7 9 7

9 → 9
Quicksort Example
function quick_sort(A):
 if A.length ≤ 1
 return A

 pivot = random element from A
 L = [], E = [], G = []
 for each x in A:
 if x < pivot:
 L.append(x)
 else if x > pivot:
 G.append(x)
 else E.append(x)
 return quick_sort(L) + E + quick_sort(G)
Worst-Case Running Time

- Worst-case for Quicksort
 - when pivot is (unique) min or max element
 - Either L or G has size \(n-1 \) and other has size 0
 - Runtime is proportional to
 - \(n + (n-1) + (n-2) + \ldots + 2 + 1 \)
 - Which is \(O(n^2) \)
Expected Runtime of Quicksort

› Assume there are no duplicates
 › if there are then we have even less recursive calls
› At each level of recursion, Quicksort can make \(n \) different & unique recursive calls depending on the chosen split/pivot
 › \(|L| = 0 \) and \(|G| = n-1\)
 › \(|L| = 1 \) and \(|G| = n-2\)
 › …
 › \(|L| = n \) and \(|G| = 0\)
› Since there are \(n \) possible splits…
› …and since the split is chosen uniformly at random…
› …each split is chosen with probability \(1/n \)
Expected Runtime of Quicksort

- Each split is chosen with probability $\frac{1}{n}$
- So expected running time is

$$T(n) = n + \frac{1}{n} \cdot \left(T(0) + T(n-1) \right) + \cdots + \frac{1}{n} \cdot \left(T(n-1) + T(n-1-(n-1)) \right)$$

$$= n + \frac{1}{n} \cdot \sum_{i=0}^{n-1} \left(T(i) + T(n-1-i) \right)$$

- Solution is $T(n) = 2n \ln n = 1.39 \cdot n \log_2 n = O(n \log n)$
Quicksort Pseudo-Code

function quick_sort(A):
 if A.length ≤ 1
 return A

 pivot = random element from A
 L = [], E = [], G = []

 for each x in A:
 if x < pivot:
 L.append(x)
 else if x > pivot:
 G.append(x)
 else E.append(x)

 return quick_sort(L) + E + quick_sort(G)
In-Place Quicksort

```python
function partition(A, low, high):
    pivotIndex = random index between low and high
    pivotValue = A[pivotIndex]
    swap A[pivotIndex] and A[high]  # move pivot to end
    currIndex = low
    for i from low to high – 1:
        if A[i] <= pivotValue :
            swap A[i] and A[currIndex]
            currIndex++
    swap A[currIndex] and A[high]   # move the pivot back
    return currIndex
```
In-Place Quicksort

function quicksort(A, low, high):
 if low < high:
 pivotIndex = partition(A, low, high)
 quicksort(A, low, pivotIndex - 1)
 quicksort(A, pivotIndex + 1, high)
Merge Sort vs. Quicksort

- Merge sort is worst-case $O(n \log n)$
- Quicksort is expected $O(n \log n)$
- Which is better?
- In practice quicksort is faster!
 - it also uses less space
 - constants are better
Outline

- Motivation
- Quadratic Sorting
 - Selection sort
 - Insertion sort
- Linearithmic Sorting
 - Merge Sort
 - Master Theorem
 - Quick Sort
- **Comparative sorting lower bound**
- Linear Sorting
 - Radix Sort
How Fast Can We Sort?

- Merge sort and Quicksort are $O(n \log n)$
- Can we do better?
 - No!
 - Well kind of…

Any comparison-based sorting algorithm has to make at least $\Omega(n \log n)$ comparisons in the worst-case to sort n keys
Lower Bound on Comparative Sorting

- Viewed abstractly, a sorting algorithm
 - takes a sequence of keys k_1, \ldots, k_n
 - outputs a permutation of the keys that has them in order
- We can view the optimal (i.e., best possible) algorithm as a perfect binary decision tree
 - internal nodes do comparisons of keys
 - leaves are the correct permutation
- To sort a sequence, we traverse tree
- Worst-case number of comparisons is height of tree
Suppose our input is X, Y, Z...

...and the proper order is Z, X, Y
Lower Bound on Comparative Sorting

- How many leaves does tree have?
 - $n!$ because there are $n!$ permutations of a sequence of n elements
 - A perfect binary tree with L leaves has height $\log L$
 - So tree with $n!$ leaves has height $\log(n!)$
 - Based on Stirling’s formula: $n! > \left(\frac{n}{e}\right)^n$

 \[
 \log(n!) > \log\left(\left(\frac{n}{e}\right)^n\right)
 \]

 \[
 \log(n!) > n \log n - n \log e
 \]

- So height of tree (and # of comparisons) is $\Omega(n \log n)$
Non-Comparative Sorting

- Sorting functions are used on different types of inputs
 - Integers, floats, strings, arrays, other objects…
 - As long as we can compare the inputs we can use comparative sorting algorithms
- But for certain kinds of inputs, we can sometimes do better
 - example: for positive integers we can use Radix sort
Radix Sort

- How would you sort 258391 and 258492?
 - digit by digit
 - the 3 high order digits are same…
 - …so you keep going until you see 3<4 so 258391 must less than 258492
Radix Sort

- How would you sort an array of numbers between 0 and 9?
 - example: \([5, 1, 6, 2, 3, 1]\) \(\rightarrow\) \([1, 1, 2, 3, 5, 6]\)
 - Create array of 10 buckets
 - for each number \(x\), add it to bucket at index \(x\)
 - Return concatenation of all buckets (in order)
 - print out \([1, 1] + [2] + [3] + [5] + [6]\)
 - Runtime is \(O(n)\)
Radix Sort

- Radix sort combines both approaches
 - iterate from least significant to most significant digit
 - sort number by digit
- Takes advantage of
 - the “digit-iness” of integers
 - for every digit there are $O(1)$ number of options
Radix Sort

- Sort \([273, 279, 8271, 7891, 8736, 8735]\]
- Start with lowest-order digit (the 1’s place)
 - add number to bucket corresponding to that digit

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>8271</td>
<td>273</td>
<td></td>
<td>8735</td>
<td>8736</td>
<td></td>
<td></td>
<td></td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>7891</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Concatenate all buckets
 - \([8271, 7891, 273, 8735, 8736, 279]\]
- Now sorted by lowest-order digit
Radix Sort

Sort \([8271, 7891, 273, 8735, 8736, 279]\)

Start with second lowest-order digit (the 10’s place)

- add number to bucket corresponding to that digit

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>8735</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8271</td>
<td></td>
<td>7891</td>
</tr>
<tr>
<td>8736</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>273</td>
<td></td>
<td></td>
<td>279</td>
</tr>
</tbody>
</table>

- Concatenate all buckets

 \([8735, 8736, 8271, 273, 279, 7891]\)

- Now sorted by second and lowest-order digit
Radix Sort

- Sort \([8735, 8736, 8271, 273, 279, 7891]\]
- Start with third lowest-order digit (the 100’s place)
 - add number to bucket corresponding to that digit

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>8271</td>
<td></td>
<td></td>
<td></td>
<td>8735</td>
<td>7891</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8736</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>279</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Concatenate all buckets
 - \([8271, 273, 279, 8735, 8736, 7891]\]
- Now sorted by third, second and lowest-order digit
Radix Sort

- Sort \([8271, 273, 279, 8735, 8736, 7891]\)
- Start with third lowest-order digit (the 1000's place)
 - add number to bucket corresponding to that digit

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7891</td>
<td>8271</td>
<td></td>
</tr>
<tr>
<td>279</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8735</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8736</td>
<td></td>
</tr>
</tbody>
</table>

- Concatenate all buckets
 - \([273, 279, 7891, 8271, 8735, 8736]\)
- Now sorted by third, second and lowest-order digit
Radix Sort

function `radix_sort(A)`:
 - buckets = array of 10 lists
 - for place = least to most significant
 - for number in A
 - d = digit in number at place
 - buckets[d].append(number)
 - A = concatenate all buckets in order
 - empty all buckets
 return A

- Very efficient!
 - O(nd)
 - d is number of digits in the largest number
More on Radix Sort

- Can be applied to
 - positive integers in base 10 (we just saw this)
 - Octals (base 8)
 - Hexadecimal (base 16)
 - Strings (one bucket for every valid character)
- Number of buckets can be different at each round
- Can represent almost anything as a bit string and radix sort with two buckets
 - number of digits will dominate runtime
 - for long sequences will be very slow
Radix Sort

Activity #5

2 min
Radix Sort

Activity #5
Radix Sort

Activity #5

1 min
Radix Sort

Activity #5
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>Insertion sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>Merge sort</td>
<td>$O(n \log n)$</td>
<td>fast (good for large inputs)</td>
</tr>
<tr>
<td>Quick sort</td>
<td>$O(n \log n)$, expected</td>
<td>randomized, fastest (good for large inputs)</td>
</tr>
<tr>
<td>Radix sort</td>
<td>$O(nd)$</td>
<td>d is number of digits in largest number, basically linear when d is small</td>
</tr>
</tbody>
</table>
Readings

- Dasgupta et al.
 - **Section 2.1**: good intro to divide & conquer
 - **Section 2.2**: review of recurrence rels. & master theorem
 - **Section 2.3**: analysis of merge sort & lower bound on comparative sorting
References

- Slide #62
 - The character depicted is Raditz (sometimes called Radix) from the Anime *Dragon Ball Z*. He is the biological brother of Goku and one of the four remaining Universe 7 Saiyans.

- Slide #64
 - The RZA is the main producer and leader of the Wu-Tang Clan. He also released albums as his alter ego Bobby Digital.