CS STUDENT ADVOCATES MIXER

Come meet both the diversity advocates and health and wellness advocates this Friday, March 2nd @ 5pm! This will be an informal event with snacks and drinks.

Location: CIT 3rd Floor Atrium
Sorting & Master Theorem

CS16: Introduction to Data Structures & Algorithms
Spring 2018
Outline

- Motivation
- Quadratic Sorting
 - Selection sort
 - Insertion sort
- Linearithmic Sorting
 - Merge Sort
 - Master Theorem
 - Quick Sort
- Comparative sorting lower bound
- Linear Sorting
 - Radix Sort
The Problem

- Turn this

\[
\begin{array}{cccccccccccccccc}
10 & 19 & 7 & 4 & 3 & 21 & 10 & 23 & 24 & 18 & 1 & 8 & 23 & 1 & 12 \\
\end{array}
\]

- Into this

\[
\begin{array}{cccccccccccccccc}
1 & 1 & 3 & 4 & 7 & 8 & 10 & 10 & 12 & 18 & 19 & 21 & 23 & 23 & 24 \\
\end{array}
\]

- as efficiently as possible
Sorting Algorithms

- There are many ways to sort arrays
 - Iterative vs. recursive
 - in-place vs. not-in-place
 - comparison-based vs. non-comparative
- In-place algorithms
 - transform data structure w/ small (i.e., $O(1)$) extra storage
 - For sorting: array is overwritten by output instead of creating new array
- Most sorting algorithms in 16 are comparison-based
 - main operation is comparison
 - but not all (e.g., Radix sort)
“In-Placeness”

- Reversing an array

```plaintext
function reverse(A):
    n = A.length
    B = array of length n
    for i = 0 to n - 1:
        B[n-1-i] = A[i]
    return B
```

Not in-place!

```plaintext
function reverse(A):
    n = A.length
    for i = 0 to n/2:
        temp = A[i]
        A[n-1-i] = temp

Return statement not needed
```
in-place
Properties of In-Place Solutions

- Harder to write :-(
- Use less memory :-)
- Even harder to write for recursive algorithms :-(
- Tradeoff between simplicity and efficiency
Outline

- Motivation
- Quadratic Sorting
 - Selection sort
 - Insertion sort
- Linearithmic Sorting
 - Merge Sort
 - Master Theorem
 - Quick Sort
- Comparative sorting lower bound
- Linear Sorting
 - Radix Sort
Selection Sort

- Usually iterative and in-place
- Divides input array into two logical parts
 - elements already sorted
 - elements that still need to be sorted
- Selects smallest element & places it at index 0
 - then selects second smallest & places it in index 1
 - then the third smallest at index 2, etc..
Selection Sort

- Advantages
 - Very simple
 - Memory efficient if in-place (swaps elements in array)

- Disadvantages
 - Slow: $O(n^2)$
Selection Sort

- Iterate through positions
- At each position
 - store smallest element from remaining set
Selection Sort

function selection_sort(A):
 n = A.length
 for i = 0 to n-2:
 min = argmin(A[i:n-1])
 swap A[i] with A[min]
Outline

- Motivation
- Quadratic Sorting
 - Selection sort
 - Insertion sort
- Linearithmic Sorting
 - Merge Sort
 - Master Theorem
 - Quick Sort
- Comparative sorting lower bound
- Linear Sorting
 - Radix Sort
Insertion Sort

- Usually iterative and in-place
- Compares each item with all items before it…
 - …and inserts it into correct position

Advantages
- Works really well if items partially sorted
- Memory efficient if in-place (swaps elements in array)

Disadvantages
- Slow: $O(n^2)$
Insertion Sort

- Compares each item with all items before it...
 - ...and inserts it into correct position

Note: 23 > 22 so don’t need to keep checking since rest is already sorted
Insertion Sort

function insertion_sort(A):
 n = A.length
 for i = 1 to n-1:
 for j = i down to 1:
 if a[j] < a[j-1]:
 swap a[j] and a[j-1]
 else:
 break # out of the inner for loop
 # this prevents double checking the
 # already sorted portion
Outline

- Motivation
- Quadratic Sorting
 - Selection sort
 - Insertion sort
- Linearithmic Sorting
 - **Merge Sort**
 - Master Theorem
 - Quick Sort
- Comparative sorting lower bound
- Linear Sorting
 - Radix Sort
Divide & Conquer

- Algorithmic design paradigm
 - divide: divide input S into disjoint subsets S_1, \ldots, S_k
 - recur: solve sub-problems on S_1, \ldots, S_k
 - conquer: combine solutions for S_1, \ldots, S_k into solution for S
- Base case is usually sub-problem of size 1 or 0
Merge Sort

- Sorting algorithm based on divide & conquer
- Like quadratic sorts
 - comparative
- Unlike quadratic sorts
 - recursive
 - linearithmic $O(n \log n)$
Merge Sort

- Merge sort on n-element sequence S
 - divide: divide S into disjoint subsets S_1 and S_2
 - recur: recursively merge sort S_1 and S_2
 - conquer: merge S_1 and S_2 into sorted sequence
- Suppose we want to sort
 - $7, 2, 9, 4, 3, 8, 6, 1$
Merge Sort Recursion Tree

7 2 9 4 | 3 8 6 1

Diagram showing the recursive steps of Merge Sort.
Merge Sort Recursion Tree

7 2 9 4 | 3 8 6 1

7 2 | 9 4

1 3 8 6

2 7 4 9

3 8 6 1

4 9 7 2

1 2 3 4 6 7 8 9
Merge Sort Recursion Tree

7 2 9 4 | 3 8 6 1

7 2 | 9 4

7 | 2

1 3 8 6

1 2 3 4 6 7 8 9
Merge Sort Recursion Tree
Merge Sort Recursion Tree

7 2 9 4 | 3 8 6 1

7 2 9 4

7 2 2 7

7 2 7

7 7

2 2

9 9

4 4

3 3

8 8

6 6

1 1
Merge Sort Recursion Tree
Merge Sort Recursion Tree
Merge Sort Recursion Tree

7 2 9 4 | 3 8 6

7 2 | 9 4 → 2 4 7 9

7 | 2 → 2 7

7 → 7

9 4 → 4 9

9 → 9

4 → 4

3 8 → 3 8

3 → 3

8 → 8

6 1 → 1 6

6 → 6

1 → 1
Merge Sort Recursion Tree
function **mergeSort**(A):
 n = A.length
 if n <= 1:
 return A
 mid = n/2
 left = mergeSort(A[0...mid-1])
 right = mergeSort(A[mid...n-1])
 return merge(left, right)
function **merge**(A, B):
 result = []
 aIndex = 0
 bIndex = 0
 while aIndex < A.length and bIndex < B.length:
 if A[aIndex] <= B[bIndex]:
 result.append(A[aIndex])
 aIndex++
 else:
 result.append(B[bIndex])
 bIndex++
 if aIndex < A.length:
 result = result + A[aIndex:end]
 if bIndex < B.length:
 result = result + B[bIndex:end]
 return result
Merge Sort

Activity #1

2 min
Merge Sort

Activity #1

2 min
Merge Sort

Activity #1

1 min
Merge Sort

Activity #1
Merge Sort Recurrence Relation

- Merge sort steps
 - Recursively merge sort left half
 - Recursively merge sort right half
 - Merge both halves

- \(T(n) \): time to merge sort input of size \(n \)
 - \(T(n) = \text{step 1} + \text{step 2} + \text{step 3} \)
 - Steps 1 & 2 are merge sort on half input so \(T(n/2) \)
 - Step 3 is \(O(n) \)
Merge Sort Recurrence Relation

- General case
 \[T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + O(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n) \]

- Base case
 \[T(1) = c \]
Merge Sort Recurrence Relation

- Plug & chug

\[T(1) = c_1 \]
\[T(2) = 2 \cdot T(1) + 2 = 2c_1 + 2 \]
\[T(4) = 2 \cdot T(2) + 4 = 2(2c_1 + 2)4 = 4c_1 + 8 \]
\[T(8) = 2 \cdot T(4) + 8 = 2(4c_1 + 8) + 8 = 8c_1 + 24 \]
\[T(16) = 2 \cdot T(8) + 16 = 2(8c_1 + 24) + 16 = 16c_1 + 64 \]

- Solution

\[T(n) = nc_1 + n \log n = O(n \log n) \]
Analysis of Merge Sort

- Merge sort recursive tree is perfect binary tree so has height $O(\log n)$
- At each depth k: need to split and merge 2^k sequences of size $n/2^k$
 - work at each depth is $O(n)$

<table>
<thead>
<tr>
<th>depth</th>
<th>sequenc</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$n/2$</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>$n/4$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>k</td>
<td>2^k</td>
<td>$n/2^k$</td>
</tr>
</tbody>
</table>
Analysis of Merge Sort

- To determine that Merge sort was $O(n \log n)$
 - Used plug and chug to guess a solution
 - Prove that $O(n \log n)$ is correct (e.g., using induction)
- Can be a lot of work
Outline

- Motivation
- Quadratic Sorting
 - Selection sort
 - Insertion sort
- Linearithmic Sorting
 - Merge Sort
 - **Master Theorem**
 - Quick Sort
- Comparative sorting lower bound
- Linear Sorting
 - Radix Sort
The Master Theorem

- Solves large class of recurrence relations
 - we will learn how to use it but not its proof
 - See Dasgupta et al. p. 58-60 for proof
- Let $T(n)$ be a monotonically-increasing function of form
 \[T(n) = a \cdot T \left(\frac{n}{b} \right) + \Theta(n^d) \]
 - a: number of sub-problems
 - n/b: size of each sub-problem
 - n^d: work to prepare sub-problems & combine their solutions
The Master Theorem

- If $a \geq 1$, $b > 1$, $d \geq 0$, then
 - if $a < b^d$ then $T(n) = \Theta(n^d)$
 - if $a = b^d$ then $T(n) = \Theta(n^d \log n)$
 - if $a > b^d$ then $T(n) = \Theta(n^{\log_b a})$

- Applying Master Theorem to merge sort
 - Recurrence relation of merger sort: $T(n) = 2T(n/2) + O(n^1)$
 - $a = 2$, $b = 2$ and $d = 1$ so $a = b^d$
 - and $T(n) = \Theta(n^d \log n)$
 - $= \Theta(n^1 \log n)$
 - $= \Theta(n \log n)$
Master Theorem

\[T(n) = a \cdot T \left(\frac{n}{b} \right) + \Theta(n^d) \]

- \[T(n) = \Theta(n^d) \] if \(a < b^d \)
- \[T(n) = \Theta(n^d \log n) \] if \(a = b^d \)
- \[T(n) = \Theta(n^{\log_b a}) \] if \(a > b^d \)

Activity #2+3
Master Theorem

\[T(n) = a \cdot T \left(\frac{n}{b} \right) + \Theta(n^d) \]

- \(T(n) = \Theta(n^d) \) if \(a < b^d \)
- \(T(n) = \Theta(n^d \log n) \) if \(a = b^d \)
- \(T(n) = \Theta(n^{\log_b a}) \) if \(a > b^d \)

Activity #2+3

2 min
Master Theorem

\[T(n) = a \cdot T \left(\frac{n}{b} \right) + \Theta(n^d) \]

- \[T(n) = \Theta(n^d) \text{ if } a < b^d \]
- \[T(n) = \Theta(n^d \log n) \text{ if } a = b^d \]
- \[T(n) = \Theta(n^{\log_b a}) \text{ if } a > b^d \]
Master Theorem

\[T(n) = a \cdot T \left(\frac{n}{b} \right) + \Theta(n^d) \]

- \(T(n) = \Theta(n^d) \) if \(a < b^d \)
- \(T(n) = \Theta(n^d \log n) \) if \(a = b^d \)
- \(T(n) = \Theta(n^{\log_b a}) \) if \(a > b^d \)

Activity #2+3
Outline

- Motivation
- Quadratic Sorting
 - Selection sort
 - Insertion sort
- Linearithmic Sorting
 - Merge Sort
 - Master Theorem
 - **Quick Sort**
- Comparative sorting lower bound
- Linear Sorting
 - Radix Sort
Quicksort

- Randomized sorting algorithm
- Based on divide-and-conquer
 - divide: pick random element (called pivot) and partition set into
 - **L**: elements less than x
 - **E**: elements equal to x
 - **G**: elements larger than x
 - recur: quicksort L and G
 - conquer: join L, E and G
Quicksort

Activity #4 2 min
Quicksort

Activity #4

2 min
Quicksort

Activity #4

1 min
Quicksort

Activity #4
Quicksort Example

random pivot

7 2 9 4 3 7 6 1
Quicksort Example
Quicksort Example
Quicksort Example
Quicksort Example

```
7 2 9 4 3 7 6 1
```

```
2 4 3 1
```

```
1 1
```

```
4 3
```

```
4 4
```

```
```

```
```

```
```
Quicksort Example

7 2 9 4 3 7 6 1

2 4 3 1

1 \rightarrow 1

4 3 \rightarrow 3 4

4 \rightarrow 4
Quicksort Example
Quicksort Example

1. 7 2 9 4 3 7 6 1
2. 2 4 3 1 → 1 2 3 4
3. 7 9 7
4. 1 → 1
5. 4 3 → 3 4
6. 4 → 4
Quicksort Example

7 2 9 4 3 7 6 1

2 4 3 1 → 1 2 3 4

1 → 1

4 3 → 3 4

9 → 9

1

4 → 4
Quicksort Example

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1

4 3 → 3 4

4 → 4

7 9 7 → 7 7 9

9 → 9
function quick_sort(A):
 if A.length ≤ 1
 return A

 pivot = random element from A
 L = [], E = [], G = []
 for each x in A:
 if x < pivot:
 L.append(x)
 else if x > pivot:
 G.append(x)
 else E.append(x)
 return quick_sort(L) + E + quick_sort(G)
Worst-Case Running Time

- Worst-case for Quicksort
 - when pivot is (unique) min or max element
 - Either L or G has size \(n-1 \) and other has size 0
 - Runtime is proportional to
 - \(n + (n-1) + (n-2) + \ldots + 2 + 1 \)
 - Which is \(O(n^2) \)

<table>
<thead>
<tr>
<th>depth</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>n-1</td>
</tr>
<tr>
<td>2</td>
<td>n-2</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>n-1</td>
<td>1</td>
</tr>
</tbody>
</table>
Expected Runtime of Quicksort

- Assume there are no duplicates
 - if there are then we have even less recursive calls
- At each level of recursion, Quicksort can make n different & unique recursive calls depending on the chosen split/pivot
 - $|L| = 0$ and $|G| = n - 1$
 - $|L| = 1$ and $|G| = n - 2$
 - ...
 - $|L| = n$ and $|G| = 0$
- Since there are n possible splits...
- ...and since the split is chosen uniformly at random...
- ...each split is chosen with probability $1/n$
Expected Runtime of Quicksort

- Each split is chosen with probability $\frac{1}{n}$
- So expected running time is

$$T(n) = n + \frac{1}{n} \cdot (T(0) + T(n-1)) + \cdots + \frac{1}{n} \cdot (T(n-1) + T(n-1 - (n-1)))$$

$$= n + \frac{1}{n} \cdot \sum_{i=0}^{n-1} \left(T(i) + T(n-1-i) \right)$$

- Solution is $T(n) = 2n \ln n = 1.39 \cdot n \log_2 n = O(n \log n)$
function quick_sort(A):
 if A.length ≤ 1
 return A

 pivot = random element from A
 L = [], E = [], G = []
 for each x in A:
 if x < pivot:
 L.append(x)
 else if x > pivot:
 G.append(x)
 else E.append(x)
 return quick_sort(L) + E + quick_sort(G)

Not in place!
In-Place Quicksort

function **partition**(A, low, high):
 pivotIndex = random index between low and high
 pivotValue = A[pivotIndex]
 swap A[pivotIndex] and A[high] # move pivot to end
 currIndex = low
 for i from low to high – 1:
 if A[i] <= pivotValue :
 swap A[i] and A[currIndex]
 currIndex++
 swap A[currIndex] and A[high] # move the pivot back
 return currIndex
In-Place Quicksort

function quicksort(A, low, high):
 if low < high:
 pivotIndex = partition(A, low, high)
 quicksort(A, low, pivotIndex - 1)
 quicksort(A, pivotIndex + 1, high)
Merge Sort vs. Quicksort

- Merge sort is worst-case $O(n \log n)$
- Quicksort is expected $O(n \log n)$
- Which is better?
- In practice quicksort is faster!
 - it also uses less space
 - constants are better
Outline

- Motivation
- Quadratic Sorting
 - Selection sort
 - Insertion sort
- Linearithmic Sorting
 - Merge Sort
 - Master Theorem
 - Quick Sort
- **Comparative sorting lower bound**
- Linear Sorting
 - Radix Sort
How Fast Can We Sort?

- Merge sort and Quicksort are $O(n \log n)$
- Can we do better?
 - No!
 - Well kind of…

Any comparison-based sorting algorithm has to make at least $\Omega(n \log n)$ comparisons in the worst-case to sort n keys.
Lower Bound on Comparative Sorting

- Viewed abstractly, a sorting algorithm
 - takes a sequence of keys k_1, \ldots, k_n
 - outputs a permutation of the keys that has them in order
- We can view the optimal (i.e., best possible) algorithm as a perfect binary decision tree
 - internal nodes do comparisons of keys
 - leaves are the correct permutation
- To sort a sequence, we traverse tree
- Worst-case number of comparisons is height of tree
Lower Bound on Comparative Sorting

- Suppose our input is X, Y, Z…
- …and the proper order is Z, X, Y

Equal terms will be considered ≤ but ≥ would also work
Lower Bound on Comparative Sorting

- How many leaves does tree have?
 - \(n! \) because there are \(n! \) permutations of a sequence of \(n \) elements
 - A perfect binary tree with \(L \) leaves has height \(\log L \)
 - So tree with \(n! \) leaves has height \(\log(n!) \)
 - Based on Stirling’s formula: \(n! > \left(\frac{n}{e} \right)^n \)

 \[
 \log(n!) > \log \left(\left(\frac{n}{e} \right)^n \right)
 \]

 \[
 \log(n!) > n \log n - n \log e
 \]
 - So height of tree (and # of comparisons) is \(\Omega(n \log n) \)
Non-Comparative Sorting

- Sorting functions are used on different types of inputs
 - Integers, floats, strings, arrays, other objects…
 - As long as we can compare the inputs we can use comparative sorting algorithms
- But for certain kinds of inputs, we can sometimes do better
 - example: for positive integers we can use Radix sort
Radix Sort

- How would you sort 258391 and 258492?
 - digit by digit
 - the 3 high order digits are same...
 - ...so you keep going until you see $3 < 4$ so 258391 must less than 258492
Radix Sort

- How would you sort an array of numbers between 0 and 9?
 - example: \([5, 1, 6, 2, 3, 1]\) → \([1, 1, 2, 3, 5, 6]\)
 - Create array of 10 buckets
 - for each number \(x\), add it to bucket at index \(x\)
 - Return concatenation of all buckets (in order)
 - print out \([1, 1]+[2]+[3]+[5]+[6]\)
 - Runtime is \(O(n)\)
Radix Sort

- Radix sort combines both approaches
- Takes advantage of
 - the "digit-iness" of integers
 - for every digit there are $O(1)$ number of options
Radix Sort

- Sort \([273, 279, 8271, 7891, 8736, 8735]\)
- Start with lowest-order digit (the 1’s place)
 - add number to bucket corresponding to that digit

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>8271</td>
<td>273</td>
<td>8735</td>
<td>8736</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>7891</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Concatenate all buckets
 - \([8271, 7891, 273, 8735, 8736, 279]\)
- Now sorted by lowest-order digit
Radix Sort

- Sort \([8271, 7891, 273, 8735, 8736, 279]\)
- Start with second lowest-order digit (the 10's place)
 - add number to bucket corresponding to that digit

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8735</td>
<td>8271</td>
<td>7891</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8736</td>
<td>273</td>
<td>279</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Concatenate all buckets
 - \([8735, 8736, 8271, 273, 279, 7891]\)
- Now sorted by second and lowest-order digit
Radix Sort

- Sort \([8735, 8736, 8271, 273, 279, 7891]\)
- Start with third lowest-order digit (the 100’s place)
 - add number to bucket corresponding to that digit

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8271</td>
<td></td>
<td></td>
<td></td>
<td>8735</td>
<td>7891</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8736</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>279</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Concatenate all buckets
 - \([8271, 273, 279, 8735, 8736, 7891]\)
- Now sorted by third, second and lowest-order digit
Radix Sort

- Sort \([8271, 273, 279, 8735, 8736, 7891]\)
- Start with third lowest-order digit (the \(1000\)’s place)
 - add number to bucket corresponding to that digit

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7891</td>
<td>8271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>279</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8735</td>
<td></td>
<td>8736</td>
</tr>
</tbody>
</table>

- Concatenate all buckets
 - \([273, 279, 7891, 8271, 8735, 8736]\)
- Now sorted by third, second and lowest-order digit
Radix Sort

- Very efficient!
 - $O(nd)$
 - d is number of digits in the largest number

function `radix_sort(A)`:
 - buckets = array of 10 lists
 - for place = least to most significant
 - for number in A
 - d = digit in number at place
 - buckets[d].append(number)
 - A = concatenate all buckets in order
 - empty all buckets
 - return A
More on Radix Sort

- Can be applied to
 - positive integers in base 10 (we just saw this)
 - Octals (base 8)
 - Hexadecimals (base 16)
 - Strings (one bucket for every valid character)

- Number of buckets can be different at each round

- Can represent almost anything as a bit string and radix sort with two buckets
 - number of digits will dominate runtime
 - for long sequences will be very slow
Radix Sort

Activity #5

2 min
Radix Sort

Activity #5

2 min
Radix Sort

Activity #5
Radix Sort

Activity #5

0 min
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection sort</td>
<td>$O(n^2)$</td>
<td>in-place slow (good for small inputs)</td>
</tr>
<tr>
<td>Insertion sort</td>
<td>$O(n^2)$</td>
<td>in-place slow (good for small inputs)</td>
</tr>
<tr>
<td>Merge sort</td>
<td>$O(n \log n)$</td>
<td>fast (good for large inputs)</td>
</tr>
<tr>
<td>Quick sort</td>
<td>$O(n \log n)$ expected</td>
<td>randomized fastest (good for large inputs)</td>
</tr>
<tr>
<td>Radix sort</td>
<td>$O(nd)$</td>
<td>d is number of digits in largest number basically linear when d is small</td>
</tr>
</tbody>
</table>
Readings

- Dasgupta et al.
 - Section 2.1: good intro to divide & conquer
 - Section 2.2: review of recurrence rels. & master theorem
 - Section 2.3: analysis of merge sort & lower bound on comparative sorting
References

- Slide #62
 - The character depicted is Raditz (sometimes called Radix) from the Anime *Dragon Ball Z*. He is the biological brother of Goku and one of the four remaining Universe 7 Saiyans.

- Slide #64
 - The RZA is the main producer and leader of the Wu-Tang Clan. He also released albums as his alter ego Bobby Digital.