Graphs

CS16: Introduction to Data Structures & Algorithms
Summer 202 |

What 1s a Graph

» A graph Is defined by
» a set of vertices (or vertexes, or nodes) V

» a set of edges E

» Vertices and edges can both store data

Example: Social Graph

Kieran Healy, "Using metadata to find Paul Revere”

https://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/

lerminology

» Endpoints or end vertices of an edge

» U and V are endpoints of edge a

v

Incident edges of a vertex

» a, b, dareincdentto V

v

Adjacent vertices

» U and V are adjacent

v

Degree of a vertex

» X has degree of 5

v

Parallel (multiple) edges

» h, 1 are parallel edges

v

Self-loops

» J Is a self-looped edge

lerminology

» A path Is a sequence of alternating
vertices and edges

» begins and ends with a vertex

» each edge Is preceded and followed by

its endpoints

» Simple path

» path such that all its vertices and edges
are visited at most once

» Examples

» P; = V 2 X = Zisasimple path

»
s not a simple path, but is still a path

5

Applications

» Flight networks
» Road networks & GPS
The Web

» pages are vertices

v

» links are edges

The Internet

v

» routers and devices are vertices

» network connections are edges

Facebook

v

» profiles are vertices

» friendships are edges

Graph Properties

» Agraph G'=(V’,E’) Is a subgraph of G=(V,E)
iR 'c V and E’ C E

» A graph is connected i

» there exists path from each vertex
to every other vertex

» A path is a cycle If
» It starts and ends at the same vertex
» A graph Is acyclic

» If It has no cycles

A Subgraph

Connected!

Connected!

2 connected

compohnents

!

|C

Acycl

Graph Properties

» A spanning tree of G is a subgraph with

» all of G’ s vertices

» and enough of G's edges to connect each vertex
w/o cycles

Spanning tree

Graph Properties

» A spanning forest is

» a subgraph that consists of a spanning tree In each
connected component of graph

» Spanning forests never contain cycles

» this might not be the “best’” or shortest path to each

node m
<< &S

Spanning forest

Graph Properties

» G s atree if and only If It satisfies any of these
condrtions

» G has [V |-1 edges and no cycles

» G has |V | -1 edges and Is connected
» G Is connected, but removing any edge disconnects It

» G Is acyclic, but adding any edges creates a cycle

» Exactly one simple path connects each pair of
vertices In G

Graph Proof |

» Prove that
» the sum of the degrees of all vertices of some graph G...

» ...Is twice the number of edges of G
b etV = {vi1,V2,..,Vp}, Where p IS number of vertices
» [he total sum of degrees D Is such that

» D = deg(vi) + deg(v:) + .. + deg(Vvp)

» But each edge Is counted twice in D

» one for each of the two vertices incident to the edge

» SoD = 2|E|,where |E

s the number of edges.

|8

Graph Proof 2

» Prove using induction that If G I1s connected then
» |[E| = |V]|=1forall |V|z1
» Base case |V|=1
» It graph has one vertex then it will have 0 edges
» sosince |E|=0 and |V|-1=1-1=0,we have |E| =|V|-1
» Inductive hypothesis
» If graph has |V |=k vertices then |E |2zk—1

» Inductive step

» Let G be any connected graph with |V |=k+1 vertices

» We must show that |E |2k

Graph Proof 2

» Inductive step

» Let G be any connected graph with |V |=k+1 vertices
» We must show that |E| = k

» Let u be the vertex of minimum degree In G
» deg(u) = 1 since G is connected

» [fdeg(u) = 1
» Let G’ be G without u and its 1 incident edge

G’ has k vertices because we removed 1 vertex from G

v

v

G’ is still connected because we only removed a leaf

v

So by Inductive hypothesis, G’ has at least k—1 edges

v

which means that G has at least k edges

20

Graph Proof 2

» [fdeg(u) = 2
» Ebvery vertex has at least two incident edges
» S0 the total degree D of the graphis D = 2 (k+1)
» But we know from the last proof that D=2 | E |

o2 BTz 2(ktl) = |E| =z kt1" = =FriE=ai

» We showed it is true for |V |=1 (base case)...

» ...and for |V |=k+1 assuming it is true for |V |=k...

» ...s0 it is true forall |V |=1

21

Undirected grapn

Directed graph

The British
are coming!

tdge lypes

» Undirected edge

» unordered pair of vertices (L,R)

» Directed edge
» ordered palr of vertices (L,R)
» first vertex L Is the origin

» second vertex R Is the destination

» Undirected graph has undirected edges, directed
oraph has directed edges

A

Graph ADT

» Vertices and edges can
store values

» Ex: edge weights

» Accessor methods

» vertices()
» edges()
» incidentEdges(vertex)

» areAdjacent(v, \,)

» Update methods

<

<

insertVertex(value)
insertEdge(v|,)

» sometimes this function also
takes a value
so insertEdge(v,, v,, val)

removeVertex(vertex)
removeEdge(edge)

Graph Representations

» Vertices usually stored in a List or Set

» 3 common ways of representing which vertices
are adjacent

R Ecgeist(orset)
» Adjacency lists (or sets)

» Adjacency matrix

26

Fdge List

» Represents edges as a list of pairs

» Each element of list Is a single edge (a,b)

» Since the order of list doesn't matter

» can use hashset to iImprove runtime of adjacency testing

BEiSC Sct

» Store all the edges in a Hashset

(3,4) (2,5) (1,1) (1,5)
(4,6) (4,5) (1,2)

(2,3)

Big-O Performance (Edge Set)

vertices() O(1) Return set of vertices
edges() O(1l) Return set of edges

iRt lterate through each edge and check
e snitedges(y) O(|E]) T It contains vertex v
areAdjacent(vi,v2) O(1) Check if (v1,V2) exists in the set

insertVertex(v) O(1) Add vertex v to the vertex list
insertEdge(vi,v2) O(1) Add element (v1i,v2) to the set
removeVertex(v) 0 | E |) terate through each edge and

remove it If it has vertex v

removeEdge(vi,v2) O(1l) Remove edge (v1,V2)

LS

Adjacency Lists

» Etach vertex has an associated list with its neighbors

» Vertices are keys of a dictionary

» Since the order of elements In lists doesn't matter

» |lists can be hashsets instead

e L — 7 = =
= 1 - 3 e Elh
S ==) —> 4
e 5 —— =
e e) -
6 |e—> 4

30

Adjacency Set

» Each vertex associated Hashset of its neighbors

1 |e—— Hashset of {1,2,5}
2 |— Hashset of {1,3,5}

3 |e—— Hashset of {2,4}

¢ |e—— Hashsetof {3,5,6}

5 |e—— Hashsetof {1,2,4}

6 |e—— Hashset of {4}
31

Big-O Performance (Adjacency Set)

vertices() O(1) Return the set of vertices
Concatenate each vertex with Its
edges() o3 ‘ = ‘) subsequent vertices
incidentEdges(v) O(1) Return v's edge set
areAdjacent(vi,v2) O(1) Check if vz is in v1's set
insertVertex(v) O(1l) Add vertex v to the vertex set
insertEdge(vi,v2) O(1l) Add v1 to v2's edge set and vice versa
removeVertex(v) 0 (‘ v ‘) Remoye v from each of Its ac?IJacent
vertices' sets and remove v's set

removeEdge(vi,v2) O(1l) Remove v1 from v2's set and vice versa

B

Adjacency Matrix

» Matrix with n rows and n columns
» n IS hnumber of vertices
» [T u s adjacent to v then M[u,v]=T

» [T u s not adjacent to v then M[u, v]=F

» |t graph Is undirected then M[u,v]=M[Vv,u]

B5)

Adjacency Matrix

e e 1
(4) 2
(2 3
~5) 4
&> 5
6

b7

Big-O Performance (Adjacency Matrix)

vertices() O(1) Return the set of vertices
edges() o(|V]|2) [terate through the entire matrix
st terate through v's row or column to
incidentEdges(v) | O(|V]) check for trues
Note: row/col are the same in an undirected graph.
areAdjacent(vi,v2) O(1) Check index (vi,v2) for a true
' *
insertVertex(v) 0 (‘ v ‘) * Add vertex v to thg matrix (* O(1)
amortized)
insertEdge(vi,v2) O(1) Set index (vi,v2) to true
Set v's row and column to false and
removeVertex(v) il ‘) ‘) remove v from the vertex list
removeEdge(vi,v2) O(1l) Set index (vi,v2) to false

515

B and Dr |

» Remember BFT and DFT on trees!

» We can also do them on graphs

» a tree is just a special kind of graph

» often used to find certain values in graphs

36

Breadth First Traversal: Tree vs. Graph

function graphBFT(start):
//Input: start vertex
//Output: Nothing
Q = new Queue()
start.visited = true
Q.enqueue(start)
while Q is not empty:

function treeBFT(root):
//Input: Root node of tree
//Output: Nothing
Q = new Queue()

Q.enqueue(root)

while Q is not empty:
node = Q.dequeue()
doSomething(node)
enqueue node’s children

node = Q.dequeue()
doSomething(node)
for neighbor in adj nodes:
if not neighbor.visited:
neighbor.visited = true

Q.enqueue (neighbor)

doSomething() could
print, add to list, decorate

node etc...

Mark nodes as visited otherwise you will loop

forever!

B

Applications: Flight Paths Exist

» Given undirected graph with airports & flights

» IS It possible to fly from one airport to another?
» Strategy

» use breadth first search starting at first node

» and determine If ending airport Is ever visited

@O @ ORD o
el
= <D

CMa>

38

Applications: Flight Paths Exist

» |s there flight from SFO to PVD?

Applications: Flight Paths Exist

» |s there flight from SFO to PVD?

Applications: Flight Paths Exist

» |s there flight from SFO to PVD?

@ @ —(PVD
570 ‘ <
AO— @ s

Applications: Flight Paths Exist

» |Is there flight from SFO to PVD?

BTV

» Yes! but how do we do 1t with code?

i

Flight Paths Exist Pseudo-Code

function pathExists(from, to):
//Input: from: vertex, to: vertex
//Output: true if path exists, false otherwise

Q = new Queue()
from.visited = true
Q.enqueue(from)
while Q is not empty:
airport = Q.dequeue()
if airport == to:
return true
for neighbor in airport’s adjacent nodes:
if not neighbor.visited:
neighbor.visited = true
Q.enqueue (neighbor)

return false

455

Applications: Flight Layovers

» Given undirected graph with airports & flights

» decorate vertices w/ least number of
stops from a given source

» If no way to get to a an airport decorate w/

» Strategy

» decorate each node w/ initial ‘'stop value’ of ©0
» use breadth first traversal to decorate each node...

» ...W/ ‘stop value’ of one greater than Its previous value

44

Flight Layovers Pseudo-Code

function numStops (G, source):

//Input: G: graph, source: vertex
//Output: Nothing
//Purpose: decorate each vertex with the lowest number of

// layovers from source.

for every node in G:
node.stops = infinity

Q = new Queue()
source.stops = 0
source.visited = true
Q.enqueue (source)
while Q is not empty:
airport = Q.dequeue()
for neighbor in airport’s adjacent nodes:
if not neighbor.visited:
neighbor.visited = true
neighbor.stops = airport.stops + 1
Q.enqueue (neighbor)

Flight Layovers Example

e
amp
nt Layovers £x

Flig

®y

= @ ®ﬂ

