
Graphs
CS16: Introduction to Data Structures & Algorithms

Summer 2021

What is a Graph
‣ A graph is defined by

‣ a set of vertices (or vertexes, or nodes) V

‣ a set of edges E

‣ Vertices and edges can both store data

Example: Social Graph

Kieran Healy, “Using metadata to find Paul Revere”

https://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/

2

1
2

3

2

2

4

3

2

1

Terminology
‣ Endpoints or end vertices of an edge

‣ U and V are endpoints of edge a

‣ Incident edges of a vertex

‣ a, b, d are incident to V

‣ Adjacent vertices

‣ U and V are adjacent

‣ Degree of a vertex

‣ X has degree of 5

‣ Parallel (multiple) edges

‣ h, i are parallel edges

‣ Self-loops

‣ j is a self-looped edge

4

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

Terminology
‣ A path is a sequence of alternating

vertices and edges

‣ begins and ends with a vertex

‣ each edge is preceded and followed by

its endpoints

‣ Simple path

‣ path such that all its vertices and edges

are visited at most once

‣ Examples

‣ P1 = V →b X →h Z is a simple path

‣ P2= U →c W →e X →g Y →f W →d V
is not a simple path, but is still a path

5

P1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

Applications
‣ Flight networks

‣ Road networks & GPS

‣ The Web

‣ pages are vertices

‣ links are edges

‣ The Internet

‣ routers and devices are vertices

‣ network connections are edges

‣ Facebook

‣ profiles are vertices

‣ friendships are edges

6

Graph Properties
‣ A graph G’=(V’,E’) is a subgraph of G=(V,E)

‣ if V’ ⊆ V and E’ ⊆ E

‣ A graph is connected if

‣ there exists path from each vertex  

to every other vertex

‣ A path is a cycle if

‣ it starts and ends at the same vertex

‣ A graph is acyclic

‣ if it has no cycles

7

A Subgraph

2

1
2

3

2

2

4

3

2

1

Connected?

2

1
2

3

2

2

4

3

2

1

Connected?

1
2

3

2

4

1
2 connected

components

Cycles

2

1
2

3

2

2

4

3

2

1

Acyclic?

2

1
2

3

2

2

4

3

2

1

Graph Properties
‣ A spanning tree of G is a subgraph with

‣ all of G’ s vertices

‣ and enough of G’s edges to connect each vertex  

w/o cycles

13

Spanning tree

2

1

2

2

4

3

2
3

2

1

Graph Properties
‣ A spanning forest is

‣ a subgraph that consists of a spanning tree in each

connected component of graph

‣ Spanning forests never contain cycles

‣ this might not be the “best” or shortest path to each

node

15

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

Spanning forest

1

2

4

2

Graph Properties
‣ G is a tree if and only if it satisfies any of these

conditions

‣ G has |V|-1 edges and no cycles

‣ G has |V|-1 edges and is connected

‣ G is connected, but removing any edge disconnects it

‣ G is acyclic, but adding any edges creates a cycle

‣ Exactly one simple path connects each pair of

vertices in G

17

Graph Proof 1
‣ Prove that

‣ the sum of the degrees of all vertices of some graph G…

‣ …is twice the number of edges of G

‣ Let V = {v1,v2,…,vp}, where p is number of vertices

‣ The total sum of degrees D is such that

‣ D = deg(v1) + deg(v2) + … + deg(vp)

‣ But each edge is counted twice in D

‣ one for each of the two vertices incident to the edge

‣ So D = 2|E|, where |E| is the number of edges.
18

Graph Proof 2
‣ Prove using induction that if G is connected then

‣ |E| ≥ |V|–1, for all |V|≥1

‣ Base case |V|=1

‣ If graph has one vertex then it will have 0 edges

‣ so since |E|=0 and |V|-1=1-1=0, we have |E| ≥|V|-1

‣ Inductive hypothesis

‣ If graph has |V|=k vertices then |E|≥k–1

‣ Inductive step

‣ Let G be any connected graph with |V|=k+1 vertices

‣ We must show that |E|≥k

19

Graph Proof 2
‣ Inductive step

‣ Let G be any connected graph with |V|=k+1 vertices

‣ We must show that |E| ≥ k

‣ Let u be the vertex of minimum degree in G

‣ deg(u) ≥ 1 since G is connected

‣ If deg(u) = 1
‣ Let G’ be G without u and its 1 incident edge

‣ G’ has k vertices because we removed 1 vertex from G

‣ G’ is still connected because we only removed a leaf

‣ So by inductive hypothesis, G’ has at least k–1 edges

‣ which means that G has at least k edges

20

Graph Proof 2
‣ If deg(u) ≥ 2
‣ Every vertex has at least two incident edges

‣ So the total degree D of the graph is D ≥ 2(k+1)

‣ But we know from the last proof that D=2|E|

‣ so 2|E| ≥ 2(k+1) ⟹ |E| ≥ k+1 ⟹ |E|≥k

‣ We showed it is true for |V|=1 (base case)…

‣ …and for |V|=k+1 assuming it is true for |V|=k…

‣ …so it is true for all |V|≥1
21

Undirected graph

2

1
2

3

2

2

4

3

2

1

Directed graph

The British
are coming!

Cycle?

Cycle?

Edge Types
‣ Undirected edge

‣ unordered pair of vertices (L,R)

‣ Directed edge

‣ ordered pair of vertices (L,R)

‣ first vertex L is the origin

‣ second vertex R is the destination

‣ Undirected graph has undirected edges, directed
graph has directed edges

24

Graph ADT
‣ Vertices and edges can

store values

‣ Ex: edge weights

‣ Accessor methods

‣ vertices()

‣ edges()

‣ incidentEdges(vertex)

‣ areAdjacent(v1, v2)

‣ Update methods

‣ insertVertex(value)

‣ insertEdge(v1, v2)

‣ sometimes this function also  
takes a value  
so insertEdge(v1, v2, val)

‣ removeVertex(vertex)

‣ removeEdge(edge)

Graph Representations
‣ Vertices usually stored in a List or Set

‣ 3 common ways of representing which vertices

are adjacent

‣ Edge list (or set)

‣ Adjacency lists (or sets)

‣ Adjacency matrix

26

Edge List
‣ Represents edges as a list of pairs

‣ Each element of list is a single edge (a,b)
‣ Since the order of list doesn’t matter

‣ can use hashset to improve runtime of adjacency testing

27

[(1,1),(1,2),(1,5),(2,3),(2,5),(3,4),(4,5),(4,6)]

Edge Set
‣ Store all the edges in a Hashset

28

(1,1)(3,4) (1,5)

(4,5)

(2,5)

(4,6) (1,2)

(2,3)

Big-O Performance (Edge Set)

29

Operation Runtime Explanation
vertices() O(1) Return set of vertices
edges() Return set of edges

incidentEdges(v) Iterate through each edge and check
if it contains vertex v

areAdjacent(v1,v2) O(1) Check if (v1,v2) exists in the set

insertVertex(v) O(1) Add vertex v to the vertex list
insertEdge(v1,v2) O(1) Add element (v1,v2) to the set

removeVertex(v) O(|E|) Iterate through each edge and
remove it if it has vertex v

removeEdge(v1,v2) O(1) Remove edge (v1,v2)

O(1)

O(|E|)

Adjacency Lists
‣ Each vertex has an associated list with its neighbors

‣ Vertices are keys of a dictionary

‣ Since the order of elements in lists doesn’t matter

‣ lists can be hashsets instead

30

1

2

3

4

5

6

1 2 5

1 3 5
2 4

3 5 6

1 2 4

4

Adjacency Set
‣ Each vertex associated Hashset of its neighbors

31

1

2

3

4

5

6

Hashset of {1,2,5}
Hashset of {1,3,5}
Hashset of {2,4}
Hashset of {3,5,6}
Hashset of {1,2,4}
Hashset of {4}

Big-O Performance (Adjacency Set)

32

Operation Runtime Explanation
vertices() O(1) Return the set of vertices

edges() Concatenate each vertex with its
subsequent vertices

incidentEdges(v) Return v’s edge set
areAdjacent(v1,v2) O(1) Check if v2 is in v1’s set
insertVertex(v) O(1) Add vertex v to the vertex set

insertEdge(v1,v2) O(1) Add v1 to v2’s edge set and vice versa

removeVertex(v) O(|V|) Remove v from each of its adjacent
vertices’ sets and remove v’s set

removeEdge(v1,v2) O(1) Remove v1 from v2’s set and vice versa

O(|E|)

O(1)

Adjacency Matrix
‣ Matrix with n rows and n columns

‣ n is number of vertices

‣ If u is adjacent to v then M[u,v]=T

‣ If u is not adjacent to v then M[u,v]=F

‣ If graph is undirected then M[u,v]=M[v,u]

33

Adjacency Matrix

34

1 2 3 4 5 6

1 T T F F T F

2 T F T F T F

3 F T F T F F

4 F F T F T T

5 T T F T F F

6 F F F T F F

Big-O Performance (Adjacency Matrix)

35

Operation Runtime Explanation
vertices() O(1) Return the set of vertices
edges() Iterate through the entire matrix

incidentEdges(v)
Iterate through v’s row or column to

check for trues

Note: row/col are the same in an undirected graph.

areAdjacent(v1,v2) O(1) Check index (v1,v2) for a true

insertVertex(v) O(|V|)* Add vertex v to the matrix (* O(1)
amortized)

insertEdge(v1,v2) O(1) Set index (v1,v2) to true

removeVertex(v) O(|V|) Set v’s row and column to false and
remove v from the vertex list

removeEdge(v1,v2) O(1) Set index (v1,v2) to false

O(|V|2)

O(|V|)

BFT and DFT
‣ Remember BFT and DFT on trees?

‣ We can also do them on graphs

‣ a tree is just a special kind of graph

‣ often used to find certain values in graphs

36

Breadth First Traversal: Tree vs. Graph

37

function treeBFT(root):

//Input: Root node of tree

//Output: Nothing

Q = new Queue()

Q.enqueue(root)

while Q is not empty:

node = Q.dequeue()

doSomething(node)

enqueue node’s children

function graphBFT(start):

//Input: start vertex

//Output: Nothing

Q = new Queue()

start.visited = true

Q.enqueue(start)

while Q is not empty:

node = Q.dequeue()

doSomething(node)

for neighbor in adj nodes:

if not neighbor.visited:

neighbor.visited = true

Q.enqueue(neighbor)

doSomething() could  
print, add to list, decorate

node etc…

Mark nodes as visited otherwise you will loop
forever!

Applications: Flight Paths Exist
‣ Given undirected graph with airports & flights

‣ is it possible to fly from one airport to another?

‣ Strategy

‣ use breadth first search starting at first node

‣ and determine if ending airport is ever visited

38

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

39

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

40

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

41

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Applications: Flight Paths Exist
‣ Is there flight from SFO to PVD?

‣ Yes! but how do we do it with code?

42

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

Flight Paths Exist Pseudo-Code

43

function pathExists(from, to):

//Input: from: vertex, to: vertex

//Output: true if path exists, false otherwise

Q = new Queue()

from.visited = true

Q.enqueue(from)

while Q is not empty:

airport = Q.dequeue()

if airport == to:

return true

for neighbor in airport’s adjacent nodes:

if not neighbor.visited:

neighbor.visited = true

Q.enqueue(neighbor)

return false

Applications: Flight Layovers
‣ Given undirected graph with airports & flights

‣ decorate vertices w/ least number of  

stops from a given source

‣ if no way to get to a an airport decorate w/ ∞
‣ Strategy

‣ decorate each node w/ initial ‘stop value’ of ∞

‣ use breadth first traversal to decorate each node…

‣ …w/ ‘stop value’ of one greater than its previous value

44

Flight Layovers Pseudo-Code

45

function numStops(G, source):

//Input: G: graph, source: vertex

 //Output: Nothing

 //Purpose: decorate each vertex with the lowest number of

 // layovers from source.

 for every node in G:

node.stops = infinity

 Q = new Queue()

 source.stops = 0

 source.visited = true

 Q.enqueue(source)

 while Q is not empty:

airport = Q.dequeue()

for neighbor in airport’s adjacent nodes:

if not neighbor.visited:

neighbor.visited = true

neighbor.stops = airport.stops + 1

Q.enqueue(neighbor)

Flight Layovers Example

46

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

∞ ∞

∞

∞

∞

∞

∞

∞

∞

∞

Flight Layovers Example

47

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

BTV JFK

∞ ∞

∞

∞

∞

∞

∞

∞

∞

∞
0

✓

HNL

1

✓

LAX

2 ✓

SFO

2

✓

DFW

2✓

ORD

3 ✓

PVD

3
✓

LGA

3

✓

MIA

