Graphs

CS I 6: Introduction to Data Structures & Algorithms
Summer 202 I

What is a Graph

- A graph is defined by
 - a set of vertices (or vertexes, or nodes) V
 - a set of edges E
- Vertices and edges can both store data

Example: Social Graph

Kieran Healy, "Using metadata to find Paul Revere"
https://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/

Terminology

- Endpoints or end vertices of an edge
 - U and V are endpoints of edge a
- Incident edges of a vertex
 - a, b, d are incident to V
- Adjacent vertices
 - ▶ U and V are adjacent
- Degree of a vertex
 - X has degree of 5
- Parallel (multiple) edges
 - h, i are parallel edges
- Self-loops
 - j is a self-looped edge

Terminology

- A path is a sequence of alternating vertices and edges
 - begins and ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are visited at most once
- Examples
 - ▶ $P_1 = V \rightarrow_b X \rightarrow_h Z$ is a simple path
 - ▶ $P_2 = U \rightarrow_c W \rightarrow_e X \rightarrow_g Y \rightarrow_f W \rightarrow_d V$ is not a simple path, but is still a path

Applications

- Flight networks
- Road networks & GPS
- The Web
 - pages are vertices
 - ▶ links are edges
- The Internet
 - routers and devices are vertices
 - network connections are edges
- Facebook
 - profiles are vertices
 - friendships are edges

Graph Properties

- A graph G'=(V',E') is a subgraph of G=(V,E)
 - if $V' \subseteq V$ and $E' \subseteq E$
- A graph is connected if
 - there exists path from each vertex to every other vertex
- A path is a cycle if
 - it starts and ends at the same vertex
- A graph is acyclic
 - if it has no cycles

A Subgraph

Connected?

Connected?

Cycles

Acyclic?

Graph Properties

- A spanning tree of G is a subgraph with
 - ▶ all of G's vertices
 - and enough of G's edges to connect each vertex w/o cycles

Spanning tree

Graph Properties

- A spanning forest is
 - a subgraph that consists of a spanning tree in each connected component of graph
- Spanning forests never contain cycles
 - this might not be the "best" or shortest path to each node

Spanning forest

Graph Properties

- G is a tree if and only if it satisfies any of these conditions
 - ▶ G has | V | −1 edges and no cycles
 - ▶ G has | V | -1 edges and is connected
 - ▶ G is connected, but removing any edge disconnects it
 - ▶ G is acyclic, but adding any edges creates a cycle
 - Exactly one simple path connects each pair of vertices in G

Graph Proof I

- Prove that
 - ▶ the sum of the degrees of all vertices of some graph G...
 - ...is twice the number of edges of G
- Let $V = \{v_1, v_2, ..., v_p\}$, where p is number of vertices
- The total sum of degrees D is such that
 - ▶ D = deg(v_1) + deg(v_2) + ... + deg(v_p)
- ▶ But each edge is counted twice in **D**
 - one for each of the two vertices incident to the edge
- ▶ So D = 2 | E |, where | E | is the number of edges.

Graph Proof 2

- ▶ Prove using induction that if **G** is connected then
 - ▶ $|E| \ge |V| -1$, for all $|V| \ge 1$
- ▶ Base case |V| = 1
 - ▶ If graph has one vertex then it will have 0 edges
 - ▶ so since |E|=0 and |V|-1=1-1=0, we have $|E| \ge |V|-1$
- Inductive hypothesis
 - If graph has | V | =k vertices then | E | ≥k-1
- Inductive step
 - Let G be any connected graph with |V| = k+1 vertices
 - We must show that |E|≥k

Graph Proof 2

- Inductive step
 - Let G be any connected graph with |V| = k+1 vertices
 - We must show that $|E| \ge k$
- Let u be the vertex of minimum degree in G
 - → deg(u) ≥ 1 since G is connected
- $\blacktriangleright \text{ If deg(u)} = 1$
 - ▶ Let G' be G without u and its 1 incident edge
 - ▶ G' has k vertices because we removed 1 vertex from G
 - ▶ G' is still connected because we only removed a leaf
 - ▶ So by inductive hypothesis, **G'** has at least **k−1** edges
 - which means that G has at least k edges

Graph Proof 2

- ▶ If $deg(u) \ge 2$
 - Every vertex has at least two incident edges
 - ▶ So the total degree D of the graph is $D \ge 2(k+1)$
 - ▶ But we know from the last proof that D=2 | E |
 - ▶ so $2|E| \ge 2(k+1) \implies |E| \ge k+1 \implies |E| \ge k$
- We showed it is true for |V| = 1 (base case)...
 - ightharpoonupand for |V| = k+1 assuming it is true for |V| = k...
 - ...so it is true for all | V | ≥1

Undirected graph

Directed graph

Edge Types

- Undirected edge
 - unordered pair of vertices (L,R)
- Directed edge
 - ordered pair of vertices (L,R)
 - first vertex L is the origin
 - second vertex R is the destination
- Undirected graph has undirected edges, directed graph has directed edges

Graph ADT

- Vertices and edges can store values
 - Ex: edge weights
- Accessor methods
 - vertices()
 - + edges()
 - incidentEdges(vertex)
 - ▶ areAdjacent(∨1, ∨2)

- Update methods
 - insertVertex(value)
 - insertEdge(v₁, v₂)
 - sometimes this function also takes a value
 - so insertEdge(v_1 , v_2 , val)
 - removeVertex(vertex)
 - removeEdge(edge)

Graph Representations

- Vertices usually stored in a List or Set
- 3 common ways of representing which vertices are adjacent
 - Edge list (or set)
 - Adjacency lists (or sets)
 - Adjacency matrix

Edge List

- Represents edges as a list of pairs
- ▶ Each element of list is a single edge (a,b)
- Since the order of list doesn't matter
 - can use hashset to improve runtime of adjacency testing

Edge Set

Store all the edges in a Hashset

Big-O Performance (Edge Set)

Operation	Runtime	Explanation	
vertices()	0(1)	Return set of vertices	
edges()	0(1)	Return set of edges	
incidentEdges(v)	O(E)	Iterate through each edge and check if it contains vertex v	
areAdjacent(v ₁ ,v ₂)	0(1)	Check if (v_1, v_2) exists in the set	
insertVertex(v)	0(1)	Add vertex v to the vertex list	
insertEdge(v ₁ ,v ₂)	0(1)	Add element (v_1, v_2) to the set	
removeVertex(v)	O(E)	Iterate through each edge and remove it if it has vertex v	
removeEdge(v ₁ ,v ₂)	0(1)	Remove edge (v_1, v_2)	

Adjacency Lists

- Each vertex has an associated list with its neighbors
 - Vertices are keys of a dictionary
- Since the order of elements in lists doesn't matter
 - Iists can be hashsets instead

Adjacency Set

Each vertex associated Hashset of its neighbors

Big-O Performance (Adjacency Set)

Operation	Runtime	Explanation	
vertices()	0(1)	Return the set of vertices	
edges()	O(E)	Concatenate each vertex with its subsequent vertices	
incidentEdges(v)	0(1)	Return v 's edge set	
areAdjacent(v ₁ ,v ₂)	0(1)	Check if \mathbf{v}_2 is in \mathbf{v}_1 's set	
insertVertex(v)	0(1)	Add vertex \mathbf{v} to the vertex set	
insertEdge(v ₁ ,v ₂)	0(1)	Add \mathbf{v}_1 to \mathbf{v}_2 's edge set and vice vers	
removeVertex(v)	0(V)	Remove v from each of its adjacent vertices' sets and remove v 's set	
removeEdge(v ₁ ,v ₂)	0(1)	Remove \mathbf{v}_1 from \mathbf{v}_2 's set and vice versa	

Adjacency Matrix

- Matrix with n rows and n columns
 - n is number of vertices
 - If u is adjacent to v then M[u,v]=T
 - ▶ If u is not adjacent to v then M[u,v]=F
- If graph is undirected then M[u,v]=M[v,u]

Adjacency Matrix

	1	2	3	4	5	6
1	Т	Т	F	F	Т	F
2	Т	F	Т	F	Т	F
3	F	Т	F	Т	F	F
4	F	F	Т	F	Т	Т
5	Т	Т	F	Т	F	F
6	F	F	F	T	F	F

Big-O Performance (Adjacency Matrix)

Operation	Runtime	Explanation	
vertices()	0(1)	Return the set of vertices	
edges()	O(V 2)	Iterate through the entire matrix	
incidentEdges(v)	0(V)	Iterate through v's row or column to check for trues Note: row/col are the same in an undirected graph.	
areAdjacent(v ₁ ,v ₂)	0(1)	Check index (v ₁ ,v ₂) for a true	
insertVertex(v)	0(V)*	Add vertex v to the matrix (* O(1) amortized)	
insertEdge(v ₁ ,v ₂)	0(1)	Set index (v ₁ ,v ₂) to true	
removeVertex(v)	0(V)	Set v's row and column to false and remove v from the vertex list	
removeEdge(v ₁ ,v ₂)	0(1)	Set index (v ₁ ,v ₂) to false	

BFT and DFT

- Remember BFT and DFT on trees?
- We can also do them on graphs
 - a tree is just a special kind of graph
 - often used to find certain values in graphs

Breadth First Traversal: Tree vs. Graph

```
function treeBFT(root):
    //Input: Root node of tree
    //Output: Nothing
    Q = new Queue()
    Q.enqueue(root)
    while Q is not empty:
        node = Q.dequeue()
        doSomething(node)
        enqueue node's children
```

doSomething() could print, add to list, decorate node etc...

```
function graphBFT(start):
   //Input: start vertex
   //Output: Nothing
  Q = new Queue()
   start.visited = true
  Q.enqueue(start)
  while Q is not empty:
     node = Q.dequeue()
     doSomething(node)
      for neighbor in adj nodes:
         if not neighbor.visited:
           neighbor.visited = true
           Q.enqueue(neighbor)
```

Mark nodes as visited otherwise you will loop forever!

- Given undirected graph with airports & flights
 - is it possible to fly from one airport to another?
- Strategy
 - use breadth first search starting at first node
 - and determine if ending airport is ever visited

▶ Is there flight from SFO to PVD?

Yes! but how do we do it with code?

Flight Paths Exist Pseudo-Code

```
function pathExists(from, to):
   //Input: from: vertex, to: vertex
   //Output: true if path exists, false otherwise
  Q = new Queue()
   from.visited = true
  Q.enqueue(from)
  while Q is not empty:
      airport = Q.dequeue()
      if airport == to:
        return true
      for neighbor in airport's adjacent nodes:
         if not neighbor.visited:
           neighbor.visited = true
           Q.enqueue(neighbor)
   return false
```

Applications: Flight Layovers

- Given undirected graph with airports & flights
 - decorate vertices w/ least number of stops from a given source
 - ▶ if no way to get to a an airport decorate w/ ∞
- Strategy
 - ▶ decorate each node w/ initial 'stop value' of ∞
 - use breadth first traversal to decorate each node...
 - ...w/ 'stop value' of one greater than its previous value

Flight Layovers Pseudo-Code

```
function numStops(G, source):
   //Input: G: graph, source: vertex
   //Output: Nothing
   //Purpose: decorate each vertex with the lowest number of
              layovers from source.
   for every node in G:
     node.stops = infinity
   Q = new Queue()
   source.stops = 0
   source.visited = true
   Q.enqueue(source)
  while Q is not empty:
     airport = Q.dequeue()
     for neighbor in airport's adjacent nodes:
        if not neighbor.visited:
           neighbor.visited = true
           neighbor.stops = airport.stops + 1
           Q.enqueue(neighbor)
```

Flight Layovers Example

Flight Layovers Example

