Graphs

CS16: Introduction to Data Structures & Algorithms
Summer 2021
What is a Graph

- A graph is defined by
 - a set of vertices (or vertexes, or nodes) V
 - a set of edges E
- Vertices and edges can both store data
Example: Social Graph

Kieran Healy, “Using metadata to find Paul Revere”
Terminology

- Endpoints or end vertices of an edge
 - \(U \) and \(V \) are endpoints of edge \(a \)
- Incident edges of a vertex
 - \(a, b, d \) are incident to \(V \)
- Adjacent vertices
 - \(U \) and \(V \) are adjacent
- Degree of a vertex
 - \(X \) has degree of 5
- Parallel (multiple) edges
 - \(h, i \) are parallel edges
- Self-loops
 - \(j \) is a self-looped edge
Terminology

- A path is a sequence of alternating vertices and edges
 - begins and ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are visited at most once
- Examples
 - $P_1 = V \rightarrow_b X \rightarrow_h Z$ is a simple path
 - $P_2 = U \rightarrow_c W \rightarrow_e X \rightarrow_g Y \rightarrow_f W \rightarrow_d V$ is not a simple path, but is still a path
Applications

- Flight networks
- Road networks & GPS
- The Web
 - pages are vertices
 - links are edges
- The Internet
 - routers and devices are vertices
 - network connections are edges
- Facebook
 - profiles are vertices
 - friendships are edges
Graph Properties

- A graph $G'=(V',E')$ is a subgraph of $G=(V,E)$ if $V' \subseteq V$ and $E' \subseteq E$.

- A graph is **connected** if there exists a path from each vertex to every other vertex.

- A path is a **cycle** if it starts and ends at the same vertex.

- A graph is **acyclic** if it has no cycles.
A Subgraph
 Connected?
Connected?

2 connected components
Cycles
Acyclic?
Graph Properties

- A **spanning tree** of \(G \) is a subgraph with
 - all of \(G \)'s vertices
 - and enough of \(G \)'s edges to connect each vertex w/o cycles
Spanning tree
Graph Properties

- **A spanning forest** is
 - a subgraph that consists of a spanning tree in each connected component of graph
- Spanning forests never contain cycles
 - this might not be the “best” or shortest path to each node
Graph Properties

- G is a tree if and only if it satisfies any of these conditions
 - G has $|V| - 1$ edges and no cycles
 - G has $|V| - 1$ edges and is connected
 - G is connected, but removing any edge disconnects it
 - G is acyclic, but adding any edges creates a cycle
 - Exactly one simple path connects each pair of vertices in G
Graph Proof I

Prove that

- the sum of the degrees of all vertices of some graph G...
- ...is twice the number of edges of G

Let $V = \{v_1, v_2, ..., v_p\}$, where p is number of vertices.

The total sum of degrees D is such that

- $D = \text{deg}(v_1) + \text{deg}(v_2) + ... + \text{deg}(v_p)$

But each edge is counted twice in D

- one for each of the two vertices incident to the edge

So $D = 2|E|$, where $|E|$ is the number of edges.
Graph Proof 2

- Prove using induction that if G is connected then
 - $|E| \geq |V|-1$, for all $|V| \geq 1$
- Base case $|V|=1$
 - If graph has one vertex then it will have 0 edges
 - so since $|E|=0$ and $|V|-1=1-1=0$, we have $|E| \geq |V|-1$
- Inductive hypothesis
 - If graph has $|V|=k$ vertices then $|E| \geq k-1$
- Inductive step
 - Let G be any connected graph with $|V|=k+1$ vertices
 - We must show that $|E| \geq k$
Graph Proof 2

- Inductive step
 - Let G be any connected graph with $|V| = k + 1$ vertices
 - We must show that $|E| \geq k$
- Let u be the vertex of minimum degree in G
 - $\text{deg}(u) \geq 1$ since G is connected
- If $\text{deg}(u) = 1$
 - Let G' be G without u and its 1 incident edge
 - G' has k vertices because we removed 1 vertex from G
 - G' is still connected because we only removed a leaf
 - So by inductive hypothesis, G' has at least $k - 1$ edges
 - which means that G has at least k edges
Graph Proof 2

- If \(\text{deg}(u) \geq 2 \)
 - Every vertex has at least two incident edges
 - So the total degree \(D \) of the graph is \(D \geq 2(k+1) \)
 - But we know from the last proof that \(D = 2|E| \)
 - so \(2|E| \geq 2(k+1) \implies |E| \geq k+1 \implies |E| \geq k \)
- We showed it is true for \(|V| = 1 \) (base case)...
 - …and for \(|V| = k+1 \) assuming it is true for \(|V| = k \)...
 - …so it is true for all \(|V| \geq 1 \)
Undirected graph
Directed graph

The British are coming!

Cycle?
Edge Types

- Undirected edge
 - *unordered* pair of vertices (L,R)
- Directed edge
 - *ordered* pair of vertices (L,R)
 - first vertex L is the origin
 - second vertex R is the destination
- Undirected graph has undirected edges, directed graph has directed edges
Graph ADT

- Vertices and edges can store values
 - Ex: edge weights
- Accessor methods
 - `vertices()`
 - `edges()`
 - `incidentEdges(vertex)`
 - `areAdjacent(v1, v2)`
- Update methods
 - `insertVertex(value)`
 - `insertEdge(v1, v2)`
 - sometimes this function also takes a value
 so `insertEdge(v1, v2, val)`
 - `removeVertex(vertex)`
 - `removeEdge(edge)`
Graph Representations

- Vertices usually stored in a List or Set
- 3 common ways of representing which vertices are adjacent
 - Edge list (or set)
 - Adjacency lists (or sets)
 - Adjacency matrix
Edge List

- Represents edges as a list of pairs
- Each element of list is a single edge \((a, b)\)
- Since the order of list doesn’t matter
 - can use hashtable to improve runtime of adjacency testing

\[
[(1,1), (1,2), (1,5), (2,3), (2,5), (3,4), (4,5), (4,6)]
\]
Edge Set

- Store all the edges in a HashSet

![Diagram of a network with nodes 1, 2, 3, 4, 5, 6 and edges (1,1), (4,5), (2,3), (4,6), (2,5), (1,1), (1,5), (1,2)].
Big-O Performance (Edge Set)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertices()</td>
<td>$O(1)$</td>
<td>Return set of vertices</td>
</tr>
<tr>
<td>edges()</td>
<td>$O(1)$</td>
<td>Return set of edges</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>areAdjacent(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Check if $(v₁,v₂)$ exists in the set</td>
</tr>
<tr>
<td>insertVertex(v)</td>
<td>$O(1)$</td>
<td>Add vertex v to the vertex list</td>
</tr>
<tr>
<td>insertEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Add element $(v₁,v₂)$ to the set</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>removeEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Remove edge $(v₁,v₂)$</td>
</tr>
</tbody>
</table>
Adjacency Lists

- Each vertex has an associated list with its neighbors
 - Vertices are keys of a dictionary
- Since the order of elements in lists doesn’t matter
 - Lists can be hashsets instead
Adjacency Set

- Each vertex associated Hashset of its neighbors

1. Hashset of \{1, 2, 5\}
2. Hashset of \{1, 3, 5\}
3. Hashset of \{2, 4\}
4. Hashset of \{3, 5, 6\}
5. Hashset of \{1, 2, 4\}
6. Hashset of \{4\}
Big-O Performance (Adjacency Set)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertices()</td>
<td>$O(1)$</td>
<td>Return the set of vertices</td>
</tr>
<tr>
<td>edges()</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>$O(1)$</td>
<td>Return v’s edge set</td>
</tr>
<tr>
<td>areAdjacent(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Check if $v₂$ is in $v₁$’s set</td>
</tr>
<tr>
<td>insertVertex(v)</td>
<td>$O(1)$</td>
<td>Add vertex v to the vertex set</td>
</tr>
<tr>
<td>insertEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Add $v₁$ to $v₂$’s edge set and vice versa</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>removeEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Remove $v₁$ from $v₂$’s set and vice versa</td>
</tr>
</tbody>
</table>
Adjacency Matrix

- Matrix with n rows and n columns
 - n is number of vertices
 - If u is adjacent to v then $M[u,v]=T$
 - If u is not adjacent to v then $M[u,v]=F$
- If graph is undirected then $M[u,v]=M[v,u]$
Adjacency Matrix
<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertices()</td>
<td>$O(1)$</td>
<td>Return the set of vertices</td>
</tr>
<tr>
<td>edges()</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: row/col are the same in an undirected graph.</td>
</tr>
<tr>
<td>areAdjacent(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Check index $(v₁,v₂)$ for a true</td>
</tr>
<tr>
<td>insertVertex(v)</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>insertEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Set index $(v₁,v₂)$ to true</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>removeEdge(v₁,v₂)</td>
<td>$O(1)$</td>
<td>Set index $(v₁,v₂)$ to false</td>
</tr>
</tbody>
</table>
BFT and DFT

- Remember BFT and DFT on trees?
- We can also do them on graphs
 - a tree is just a special kind of graph
 - often used to find certain values in graphs
function treeBFT(root):
 //Input: Root node of tree
 //Output: Nothing
 Q = new Queue()
 Q.enqueue(root)
 while Q is not empty:
 node = Q.dequeue()
 doSomething(node)
 enqueue node’s children

function graphBFT(start):
 //Input: start vertex
 //Output: Nothing
 Q = new Queue()
 start.visited = true
 Q.enqueue(start)
 while Q is not empty:
 node = Q.dequeue()
 doSomething(node)
 for neighbor in adj nodes:
 if not neighbor.visited:
 neighbor.visited = true
 Q.enqueue(neighbor)

Mark nodes as visited otherwise you will loop forever!

doSomething() could print, add to list, decorate node etc…
Applications: Flight Paths Exist

- Given undirected graph with airports & flights
 - is it possible to fly from one airport to another?
- Strategy
 - use breadth first search starting at first node
 - and determine if ending airport is ever visited
Applications: Flight Paths Exist

- Is there flight from SFO to PVD?
Applications: Flight Paths Exist

- Is there a flight from SFO to PVD?
Applications: Flight Paths Exist

- Is there flight from SFO to PVD?
Applications: Flight Paths Exist

- Is there flight from SFO to PVD?

- Yes! but how do we do it with code?
function pathExists(from, to):
 // Input: from: vertex, to: vertex
 // Output: true if path exists, false otherwise
 Q = new Queue()
 from.visited = true
 Q.enqueue(from)
 while Q is not empty:
 airport = Q.dequeue()
 if airport == to:
 return true
 for neighbor in airport’s adjacent nodes:
 if not neighbor.visited:
 neighbor.visited = true
 Q.enqueue(neighbor)
 return false
Applications: Flight Layovers

- Given undirected graph with airports & flights
 - decorate vertices w/ least number of stops from a given source
 - if no way to get to an airport decorate w/ ∞

- Strategy
 - decorate each node w/ initial ‘stop value’ of ∞
 - use breadth first traversal to decorate each node…
 - …w/ ‘stop value’ of one greater than its previous value
function numStops(G, source):
 //Input: G: graph, source: vertex
 //Output: Nothing
 //Purpose: decorate each vertex with the lowest number of
 // layovers from source.

 for every node in G:
 node.stops = infinity

 Q = new Queue()
 source.stops = 0
 source.visited = true
 Q.enqueue(source)
 while Q is not empty:
 airport = Q.dequeue()
 for neighbor in airport’s adjacent nodes:
 if not neighbor.visited:
 neighbor.visited = true
 neighbor.stops = airport.stops + 1
 Q.enqueue(neighbor)
Flight Layovers Example
Flight Layovers Example