Graphs

CSI 6: Introduction to Data Structures \& Algorithms Summer 202I

What is a Graph

- A graph is defined by
- a set of vertices (or vertexes, or nodes) V
- a set of edges E
- Vertices and edges can both store data

Example: Social Graph

Kieran Healy, "Using metadata to find Paul Revere"

Terminology

- Endpoints or end vertices of an edge
- U and V are endpoints of edge a
- Incident edges of a vertex
- a, b, dare incident to V
- Adjacent vertices
- U and V are adjacent
- Degree of a vertex
- x has degree of 5
- Parallel (multiple) edges
- h, i are parallel edges

- Self-loops
- \mathbf{j} is a self-looped edge

Terminology

- A path is a sequence of alternating vertices and edges
- begins and ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
- path such that all its vertices and edges are visited at most once
- Examples
- $\mathrm{P}_{1}=\mathrm{V} \rightarrow_{\mathrm{b}} \mathrm{X} \rightarrow_{\mathrm{h}} \mathrm{Z}$ is a simple path
- $P_{2}=U \rightarrow_{\mathrm{c}} \mathrm{W} \rightarrow_{\mathrm{e}} \mathrm{X} \rightarrow_{\mathrm{g}} \mathrm{Y} \rightarrow_{\mathrm{f}} \mathrm{W} \rightarrow_{\mathrm{d}} \mathrm{V}$ is not a simple path, but is still a path

Applications

- Flight networks
- Road networks \& GPS
- The Web
- pages are vertices
- links are edges
- The Internet
- routers and devices are vertices
- network connections are edges
- Facebook
- profiles are vertices
- friendships are edges

Graph Properties

- A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$
- if $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ and $\mathrm{E}^{\prime} \subseteq \mathrm{E}$
- A graph is connected if
- there exists path from each vertex to every other vertex
- A path is a cycle if
- it starts and ends at the same vertex
- A graph is acyclic
- if it has no cycles

A Subgraph

Connected?

Connected?

Cycles

Acyclic?

Graph Properties

- A spanning tree of G is a subgraph with
- all of G's vertices
- and enough of G's edges to connect each vertex w/o cycles

Spanning tree

Graph Properties

- A spanning forest is
- a subgraph that consists of a spanning tree in each connected component of graph
- Spanning forests never contain cycles
- this might not be the "best" or shortest path to each node

Spanning forest

Graph Properties

- \mathbf{G} is a tree if and only if it satisfies any of these conditions
- G has \mid V|-1 edges and no cycles
- G has $|\mathrm{V}|-1$ edges and is connected
- G is connected, but removing any edge disconnects it
- G is acyclic, but adding any edges creates a cycle
- Exactly one simple path connects each pair of vertices in G

Graph Proof I

- Prove that
- the sum of the degrees of all vertices of some graph G...
- ... is twice the number of edges of G
- Let $\mathrm{V}=\left\{\mathrm{V}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{~V}_{\mathrm{p}}\right\}$, where p is number of vertices
- The total sum of degrees D is such that
- $D=\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\ldots+\operatorname{deg}\left(v_{p}\right)$
- But each edge is counted twice in D
- one for each of the two vertices incident to the edge
- So $D=2|E|$, where $|E|$ is the number of edges.

Graph Proof 2

- Prove using induction that if G is connected then
- $|\mathrm{E}| \geq|\mathrm{V}|-1$, for all $|\mathrm{V}| \geq 1$
- Base case $|\mathrm{V}|=1$
- If graph has one vertex then it will have 0 edges
- so since $|\mathrm{E}|=0$ and $|\mathrm{V}|-1=1-1=0$, we have $|\mathrm{E}| \geq|\mathrm{V}|-1$
- Inductive hypothesis
- If graph has $|\mathrm{V}|=\mathrm{k}$ vertices then $|\mathrm{E}| \geq \mathrm{k}-1$
- Inductive step
- Let G be any connected graph with $|\mathrm{V}|=\mathrm{k}+1$ vertices
- We must show that $|\mathrm{E}| \geq \mathrm{k}$

Graph Proof 2

- Inductive step
- Let G be any connected graph with $|\mathrm{V}|=\mathrm{k}+1$ vertices
- We must show that $|\mathrm{E}| \geq \mathrm{k}$
- Let \mathbf{u} be the vertex of minimum degree in \mathbf{G}
- $\operatorname{deg}(u) \geq 1$ since G is connected
- If $\operatorname{deg}(u)=1$
- Let G^{\prime} be G without \mathbf{u} and its 1 incident edge
- G^{\prime} has k vertices because we removed 1 vertex from G
- G^{\prime} is still connected because we only removed a leaf
- So by inductive hypothesis, G^{\prime} has at least $\mathrm{k}-1$ edges
- which means that G has at least k edges

Graph Proof 2

- If $\operatorname{deg}(u) \geq 2$
- Every vertex has at least two incident edges
- So the total degree D of the graph is $\mathrm{D} \geq 2(\mathrm{k}+1)$
- But we know from the last proof that $D=2|E|$
- so $2|\mathrm{E}| \geq 2(\mathrm{k}+1) \Longrightarrow|\mathrm{E}| \geq \mathrm{k}+1 \Longrightarrow|\mathrm{E}| \geq \mathrm{k}$
- We showed it is true for $|\mathrm{V}|=1$ (base case)...
- ...and for $|\mathrm{V}|=\mathrm{k}+1$ assuming it is true for $|\mathrm{V}|=\mathrm{k} \ldots$
- ...so it is true for all $|v| \geq 1$

Undirected graph

Directed graph

Edge Types

- Undirected edge
- unordered pair of vertices (L,R)
- Directed edge
- ordered pair of vertices (L,R)
- first vertex L is the origin
- second vertex R is the destination
- Undirected graph has undirected edges, directed graph has directed edges

Graph ADT

- Vertices and edges can store values
- Ex: edge weights
- Accessor methods
- vertices()
- edges()
- incidentEdges(vertex)
- areAdjacent($\mathrm{v}_{1}, \mathrm{v}_{2}$)
- Update methods
- insertVertex(value)
- insertEdge($\mathrm{v}_{1}, \mathrm{v}_{2}$)
- sometimes this function also takes a value so insertEdge($\mathrm{v}_{1}, \mathrm{v}_{2}$, val)
- removeVertex(vertex)
- removeEdge(edge)

Graph Representations

- Vertices usually stored in a List or Set
- 3 common ways of representing which vertices are adjacent
- Edge list (or set)
- Adjacency lists (or sets)
- Adjacency matrix

Edge List

- Represents edges as a list of pairs
- Each element of list is a single edge (a, b)
- Since the order of list doesn't matter
- can use hashset to improve runtime of adjacency testing

Edge Set

- Store all the edges in a Hashset

Big-O Performance (Edge Set)

Operation	Runtime	Explanation
vertices ()	$\mathrm{O}(1)$	Return set of vertices
edges ()	$\mathrm{O}(1)$	Return set of edges
incidentEdges(v)	$\mathrm{O}(\|\mathrm{E}\|)$	Iterate through each edge and check if it contains vertex v
areAdjacent $\left(\mathrm{v}_{\mathrm{l}}, \mathrm{v}_{2}\right)$	$\mathrm{O}(1)$	Check if ($\left.\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ exists in the set
insertVertex(v)	$\mathrm{O}(1)$	Add vertex v to the vertex list
insertEdge($\left.\mathrm{v}_{1}, \mathrm{v}_{2}\right)$	$\mathrm{O}(1)$	Add element ($\mathrm{v}_{1}, \mathrm{v}_{2}$) to the set
removeVertex (v)	$\mathrm{O}(\|\mathrm{E}\|)$	Iterate through each edge and remove it if it has vertex v
removeEdge($\left.\mathrm{v}_{1}, \mathrm{v}_{2}\right)$	$\mathrm{O}(1)$	Remove edge ($\left.\mathrm{v}_{1}, \mathrm{v}_{2}\right)$

Adjacency Lists

- Each vertex has an associated list with its neighbors
- Vertices are keys of a dictionary
- Since the order of elements in lists doesn't matter
- lists can be hashsets instead

Adjacency Set

- Each vertex associated Hashset of its neighbors

Big-O Performance (Adjacency Set)

Operation	Runtime	Explanation	
vertices()	O(1)	Return the set of vertices	
edges()	O($\|E\|$)	Concatenate each vertex with its subsequent vertices	
incidentEdges(v)	O(1)	Return v's edge set	
areAdjacent($\mathrm{v}_{\mathrm{l}}, \mathrm{v}_{2}$)	O(1)	Check if v_{2} is in v_{1} 's set	
insertVertex(v)	O(1)	Add vertex v to the vertex set	
insertEdge($\mathrm{v}_{1}, \mathrm{v}_{2}$)	O(1)	Add v_{1} to v_{2} 's edge set and vice versa	
removeVertex(v)	O(\|V)	Remove v from each of its adjacent vertices' sets and remove v's set
removeEdge($\mathrm{v}_{1}, \mathrm{v}_{2}$)	O(1)	Remove v_{1} from v_{2} 's set and vice versa	

Adjacency Matrix

- Matrix with n rows and n columns
- n is number of vertices
- If u is adjacent to v then $M[u, v]=T$
- If u is not adjacent to v then $M[u, v]=F$
- If graph is undirected then $\mathrm{M}[\mathrm{u}, \mathrm{v}]=\mathrm{M}[\mathrm{v}, \mathrm{u}]$

Adjacency Matrix

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	T	T	F	F	T	F
$\mathbf{2}$	T	F	T	F	T	F
$\mathbf{3}$	F	T	F	T	F	F
$\mathbf{4}$	F	F	T	F	T	T
$\mathbf{5}$	T	T	F	T	F	F
$\mathbf{6}$	F	F	F	T	F	F

Big-O Performance (Adjacency Matrix)

Operation	Runtime	Explanation
vertices()	$\mathrm{O}(1)$	Return the set of vertices
edges()	$\mathrm{O}\left(\|\mathrm{V}\|^{2}\right)$	Iterate through the entire matrix
incidentEdges(v)	$\mathrm{O}(\|\mathrm{V}\|)$	Iterate through v's row or column to check for trues Note: rowwol are the same in an undirected graph.
areAdjacent($\left.\mathrm{v}_{1}, \mathrm{v}_{2}\right)$	$\mathrm{O}(1)$	Check index ($\left.\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ for a true
insertVertex(v)	$\mathrm{O}(\|\mathrm{V}\|)$ *	Add vertex v to the matrix (* $\mathrm{O}(1)$ amortized $)$
insertEdge($\left.\mathrm{v}_{1}, \mathrm{v}_{2}\right)$	$\mathrm{O}(1)$	Set index $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ to true
removeVertex(v)	$\mathrm{O}(\|\mathrm{V}\|)$	Set v's row and column to false and remove v from the vertex list
removeEdge(v/, $\left.\mathrm{v}_{2}\right)$	$\mathrm{O}(1)$	Set index $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ to false

BFT and DFT

- Remember BFT and DFT on trees?
- We can also do them on graphs
- a tree is just a special kind of graph
- often used to find certain values in graphs

Breadth First Traversal:Tree vs. Graph

```
function treeBFT(root):
    //Input: Root node of tree
    //Output: Nothing
    Q = new Queue()
    Q.enqueue(root)
    while Q is not empty:
        node = Q.dequeue()
        doSomething(node)
        enqueue node's children
```

doSomething() could print, add to list, decorate node etc...

```
function graphBFT(start):
    //Input: start vertex
    //Output: Nothing
    Q = new Queue()
    start.visited = true
    Q.enqueue(start)
    while Q is not empty:
        node = Q.dequeue()
        doSomething(node)
        for neighbor in adj nodes:
        if not neighbor.visited:
        neighbor.visited = true
        Q.enqueue(neighbor)
```

 Mark nodes as visited otherwise you will loop
 forever!

Applications: Flight Paths Exist

- Given undirected graph with airports \& flights
- is it possible to fly from one airport to another?
- Strategy
- use breadth first search starting at first node
- and determine if ending airport is ever visited

Applications: Flight Paths Exist

- Is there flight from SFO to PVD?

Applications: Flight Paths Exist

- Is there flight from SFO to PVD?

Applications: Flight Paths Exist

- Is there flight from SFO to PVD?

Applications: Flight Paths Exist

- Is there flight from SFO to PVD?

- Yes! but how do we do it with code?

Flight Paths Exist Pseudo-Code

```
function pathexists(from, to):
    //Input: from: vertex, to: vertex
    //Output: true if path exists, false otherwise
    Q = new Queue()
    from.visited = true
    Q.enqueue(from)
    while Q is not empty:
        airport = Q.dequeue()
        if airport == to:
            return true
        for neighbor in airport's adjacent nodes:
            if not neighbor.visited:
                neighbor.visited = true
                Q.enqueue(neighbor)
    return false
```


Applications: Flight Layovers

- Given undirected graph with airports \& flights
- decorate vertices w/ least number of stops from a given source
- if no way to get to a an airport decorate w/ ∞
- Strategy
- decorate each node w/ initial 'stop value' of ∞
- use breadth first traversal to decorate each node...
- ...w/ 'stop value' of one greater than its previous value

Flight Layovers Pseudo-Code

```
function numStops(G, source):
    //Input: G: graph, source: vertex
    //Output: Nothing
    //Purpose: decorate each vertex with the lowest number of
    // layovers from source.
    for every node in G:
        node.stops = infinity
    Q = new Queue()
    source.stops = 0
    source.visited = true
    Q.enqueue(source)
    while Q is not empty:
        airport = Q.dequeue()
        for neighbor in airport's adjacent nodes:
            if not neighbor.visited:
            neighbor.visited = true
            neighbor.stops = airport.stops + 1
            Q.enqueue(neighbor)
```


Flight Layovers Example

Flight Layovers Example

