Sorting

CS16: Introduction to Data Structures & Algorithms
Summer 202 |

1he Problem

» Turn this

10(19| 7 | 4| 3 |21(10

» Into this

1 (113147]|8]|10

» as efficiently as possib

Sorting Is Serious!

Microsoft Research team shatters data
sorting record, wrenches trophy from
Yahoo

g 59
£33

Sorting Competition

» Sort Benchmark (sortbenchmark.org)

» Started by Jim Gray

=
S
B d A
R .
M "
. 5
5 2 - B
Sre
| 34 N S A’
b y
]

» Research scientist at Microsoft Research

» Winner of 1993 Turing Award for contributions to databases

EIcEeritSert from lencent Corp. (2016)
» 100 1B in 134 seconds
RSV EIENR 1 minute

» TaichiSort from University of Washington and UT Austin
» 61,000 records per joule

http://sortbenchmark.org

VWhy!

» Why do we care so much about sorting!

» Rule of thumb:

» “good things happen when data Is sorted”

» we can find things faster (e.g,, using binary search)

» Basic part of data science workflows

» lowns: sort by size, area, population, mean income, ...

» Batters: sort by average, home runs, OBE wRCH, ...

Sorting Algorithms

» [here are many ways to sort arrays
» [terative vs. recursive
» In-place vs. not-in-place
» comparison-based vs. non-comparative
» In-place algorithms
» transform data structure w/ small amount of extra storage (i.e,0(1))
» For sorting: array Is overwritten by output instead of creating new array
» Most sorting algorithms in |6 are comparison-based
» main operation Is comparison

» but not all (e.g,, Radix sort)

B-rlaceness’

» Reversing an array

function reverse(A): function reverse(2A):
n = A.length n = A.length
B = array of length n for i = 0 to n/2:

for 1 = 0 ton — 1: temp = A[1i]
B[n-1-i] = A[i] A[i] = A[n-1-i]

return B A[n—-1-1] = temp

A

Not in-place! in-place

Return statement
not needed

Properties of In-Place Solutions

» Harder to write ¢=(
» Use less memory :=)
» Even harder to write for recursive algorithms ¢=(

» [radeoff between simplicity and efficiency

| et's sort

Selection Sort

» Usually iterative and in-place

» Divides input array into two logical parts
» elements already sorted
» elements that still need to be sorted
» Selects smallest element & places it at index 0

» then selects second smallest & places it In iIndex 1

» then the third smallest at index 2, etc..

Selection Sort

» Advantages
» Very simple

» Memory efficient If In-place (swaps elements In array)

» Disadvantages

» Slow

Selection Sort

» Iterate through positions
» At each position

» store smallest element
from remaining set

~
...
~

5325113122 9

T g

9 125(1312253

N/ 2

I NNV3125(22]53
7

INVNV3122125|353
Rt

A A

Selection Sort

function selection sort(A):
n = A.length
for 1 = 0 to n-2:

min argmin(A[i:n-1])

swap A[1] with A[min]

Selection Sort

function selection sort(A):
n = A.length
for 1 = 0 to n-2:

min argmin(A[i:n-1])

swap A[1] with A[min]

Runtime?

Selection Sort

function selection sort(A):
n = A.length
for 1 = 0 to n-2:

min argmin(A[i:n-1])

swap A[1] with A[min]

Runtime?

@i

Insertion Sort

» Usually iterative and in-place
» Compares each item w/ all items before It...

» ...and Inserts it INnto correct position
» Advantages

» Works really well if items partially sorted

» Memory efficient If In-place (swaps elements in array)

» Disadvantages

» Slow

Insertion Sort

» Compares each ritem w/ all items
DETolfiE g

» ...and inserts It Into correct
position

Note: 23 > 27 so don't need to

keep checking since rest
s already sorted

Insertion Sort

function insertion sort(A):
n = A.length
for 1 = 1 to n-1:
for j = 1 down to 1:
if a[j] < a[j-1]:
swap a[J] and a[]-1]
else:

break # out of the inner for loop

this prevents double checking the
already sorted portion

Insertion Sort

function insertion sort(A):
n = A.length
for 1 = 1 to n-1:
for j = 1 down to 1:
if a[j] < a[j-1]:
swap a[J] and a[]-1]
else:

break # out of the inner for loop

this prevents double checking the
already sorted portion

Runtime?

Insertion Sort

function insertion sort(A):
n = A.length
for 1 = 1 to n-1:
for j = 1 down to 1:
if a[j] < a[j-1]:
swap a[J] and a[]-1]
else:

break # out of the inner for loop

this prevents double checking the
already sorted portion

Runtime?

O(n"™2)

20

Can we do better than
O(n"2)!

Fieroc

» Let's say we have two sorted lists

4

—-low can we combine them to get one sorted

st?

» Nalve approach: combine then sort

|3

22

23

25

53

==

3

9

30

45

60

| 3

22

23

25

D3

30

45

60

|3

22

23

25

30

45

53

60

)

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

[3122 2325|153+ | 8|9 |30[45

25

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

[3122 232553+ | 8] 9 |30[45

A

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

|3

22

23

25

53

i

30

45

60

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

|3

22

23

25

53

26

30

45

60

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

22

23

25

53

|3

T

30

45

60

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

23

25

53

22

28

30

45

60

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

25

53

22

23

LS

30

45

60

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

53

30

45

60

22

23

25

30

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

53

45

60

22

23

25

30

3

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

53| +

B

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

B5)

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

22

23

25

30

45

53

60

D2}

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

Runtime If total # elements is n!

22

23

25

30

45

53

60

515

BELIer merge

» Go through both lists index by index

» Add smaller element to output list

Runtime If total # elements is n!

O(n)

|3

22

23

25

30

45

53

60

36

Merge Pseudo-Code

function merge(A, B):
result []
alndex 0

bIndex 0
while aIndex < A.length and bIndex < B.length:

1f A[aIndex] <= B[bIndex]:
result.append(A[alIndex])
alndex++

else:
result.append(B[bIndex])
bIndex++

1f aIndex < A.length:
result = result + A[lalIndex:end]

1f bIndex < B.length:
result = result + B[bIndex:end]

return result

Divide & Conguer

» Algorithmic design paradigm
» divide: divide Input S Into disjoint subsets S1 ..., Sk
» recur: solve sub-problems on S1, ..., Sk

» conguer: combine solutions for S1,..., Sk INto
solution for S

» Base case Is usually sub-problem of size 1 or 0

38

Bieroc Sort

» Sorting algorithm based on divide & conguer

» Like quadratic sorts
» comparative

» Unlike quadratic sorts
> recursive

» not in-place (though In-place variants exist)

» linearthmic O(nlog n)

57

Bieroc Sort

» Merge sort on n-element sequence S
» divide: divide S Iinto disjoint subsets S1 and S»
» recur: recursively merge sort S1 and S»

» conguer: merge S1 and S» Into sorted sequence

» Suppose we want to sort
a2y D ,4,3,8,6,1

40

Merge Sort Recursion Iree

(72943861 212346789)

...................... e

‘7294 274 9:

L4

--

4]

Merge Sort Pseudo-Code

function mergeSort(A):
if A.length <= 1:
return A

mid = A.length/2
left = mergeSort(A[0...mid-1])
right = mergeSort(A[mid...n-1])

return merge(left, right)

i

Merge Sort Recurrence Relation

» Merge sort steps

» Recursively merge sort left half
» Recursively merge sort right half

» Merge both halves
» T(n):time to merge sort input of size n
Ny = step 1 + step 2 + step 3
» Steps 1 & 2 are merge sort on half input so T(n/2)
» Step 31s0(n)

455

Merge Sort Recurrence Relation

» (General case

T(n) =T (g) T (g) LOMm) =2 F (%) + O(n)
» Base case
IREL) = c

44

Merge Sort Recurrence Relation

» Plug & chug
ISIRE—"c/
B0 T(1)+2=2c +2
B -2 T(0) +4—2(2;, +2)4—4dc, + &
T(8) =2 -T(4) + 8 = 2(4cy + 8) + 8 = 8¢; + 24
T(16) = 2 - T(8) + 16 = 2(8¢; + 24) + 16 = 16¢; + 64

» Solution
T(n) =ncy + nlogn = O(nlogn)

2455

Analysis of Merge Sort

» Merge sort recursive tree Is perfect binary tree so has height 0(1og n)

» At each depth k:need to merge 2k+1 sequences of size n/2k+1

» work at each depth i1s O(n)

depth sequences sjze

0 2 n/2 [/\]

1 4 n/4 [/][\1 ——

2 8 n/4 [
. : : A\ JAN A\ JAN

k SR () () OO oOE

46

How Fast Can We Sort!

» Merge sortisO(n log n)

» Can we do better?
» No
» Well kind of...

Any comparison-based sorting algorithm has to make

at least Q (n log n) comparisons In the worst-
case to sort n keys

47

Lower Bound on Comparative Sorting

» Viewed abstractly, a sorting algorithm
» takes a sequence of keys K1, ..., Kn

» outputs a permutation of the keys that has them in order

L&
Sorting K1
Algorithm K

48

Lower Bound on Comparative Sorting

» The optimal (l.e., best possible) sorting algorithm
can be modeled as

» a perfect binary decision tree where
» each internal node compares two keys

» each leaf Is a correct permutation of the input keys

255

Lower Bound on Comparative Sorting

» Input Is a sequence X, Y, Z

» All the possible sorted sequences are at the leaves

XY
< >
X:Z
/\> < \>
(X,Y,Z) (LX,Z) | | Y-Z

/\ Philh

%ZY) | [@ZXY) | | (6Z,X) | | (Z,Y,X)

50

Lower Bound on Comparative Sorting

» o sort a sequence, we traverse tree

» What Is the worst-case number of comparisons?

» the height of tree
XY
< >
X:Z
/\> />
(X,Y,Z) (YsX,Z)

N

%ZY) | [@ZXY) | | (6Z,X) | | (Z,Y,X)

57

Lower Bound on Comparative Sorting

N\

What Is the height of this binary (decision) tree!

» How many leaves does the tree have!
» each leaf corresponds to a permutation of the input keys...

» ...and since are n! possible permutations of n keys, there are n! leaves

v

A perfect binary tree with L |leaves has height 1log L
» S0 a tree with n! leaves has height log(n!)

» Based on Stirling’s formula: s (E)n
e

log(n!) > log ((E)n)

e
log(n!) > nlogn — nloge

v

So the height of the tree and worst-case number of comparisons Is

» Q(n log n)

il

Non-Comparative Sorting

» Example: alphabetizing Doug’s record collection

» Don't care about sorting within a letter

» Dick Gaughan and Rhiannon Giddens can be In
any order

» How could we do this in O(n) time!?

i

Non-Comparative Sorting

4

Have a pile for artist names beginning with A, B, C, ...
» Within a letter; albums are unsorted

Dick Gaughan album: immediately go to "G section
Run the Jewels album: immediately go to "R" section

Rhiannon Giddens album: immediately go to "G section

his Is called “"Radix sort”

» More details In optional slides + readings

o7

Sorting In practice

4

Python and Java use TimSort, a combination of
merge and Insertion sort

» Inturtion: insertion sort great for sorted data, many
real-world datasets are already “partially” sortead

Quicksort, a different divide-and-conqguer
algorithm, also commonly used

» More detalls on quicksort in optional slides + readings

Sorting lots of data stored on many disks is still an
area of active research!

)5

Readings

» Dasgupta et al.

» Section 2.1: good intro to divide & conquer

» Section 2.2: review of recurrence rels. & master
theorem

» Section 2.3: analysis of merge sort & lower bound on
comparative sorting

56

Optional material

CMU-CS-78-154

- A General Method for Solving
[Divide-and-Conquer Recurrences

Jon Louis Bentley!
Dorothea Haken
James B. Saxe
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 16213

13 December 1978

Abstract
f 3\
The complexity of divide-and-conquer algorithms is often described by

recurrence relations of the form

T(n) = kT(n/c) + f(n).
The only method currently avallable for solving such recurrences consists of solution
tables for fixed functions f and varying k and c. In this note we describe a unifying
method for solving these recurrences that is both general in applicabllity and easy

to apply without the use of large tables.

\

\\

1. Also with the Department of Mathematics.

This research was supported in part by the Office of Naval Research under
Contract NOO0O14-76-C-0370.

1 he Master [heorem

» Solves large class of recurrence relations
» we will learn how to use 1t but not its proof

» See Dasgupta et al. p. 53-60 for proof

» Let T(n) be a monotonically-increasing function of form
B C A d
IEG="« T(b) - O(n%)

» a: number of sub-problems

» n/b:size of each sub-problem

» nd; work to prepare sub-problems & combine their
solutions

D)7

1 he Master [heorem

» If a=1,b>1,d=0,then
» if a<bdthen T(n) = 0(nd)
» ifa=bdthen T(n) = O(nd log n)
» if a>bdthenT(n) = 0 (nlogpa)
» Applying Master Theorem to merge sort
» Recurrence relation of merger sort: T(n) = 2T(n/2)+0(n)
» a=2, and so a=bd

» and T(n) = O(n' log n)
= O(n' log n)
O(n log n)

60

Quicksort
By C. A. R. Hoare

A description is given of a new method of sorting in the random-access store of a computer.

The

method compares very favourably with other known methods in speed, in economy of storage, and
in ease of programming. Certain refinements of the method, which may be useful in the optimiz-
ation of inner loops, are described in the second part of the paper.

Part One: Theory

The sorting method described in this paper is based on
the principle of resolving a problem into two simpler
subproblems. Each of these subproblems may be
resolved to produce yet simpler problems. The process
is repeated until all the resulting problems are found to
be trivial. These trivial problems may then be solved
by known methods, thus obtaining a solution of the
original more complex problem.

Partition

The problem of sorting a mass of items, occupying
consecutive locations in the store of a computer, may be
reduced to that of sorting two lesser segments of data.
provided that it is known that the keys of each of the
items held in locations lower than a certain dividing line
are less than the keys of all the items held in locations
above this dividing line. In this case the two segments
may be sorted separately. and as a result the whole mass
of data will be sorted.

In practice, the existence of such a dividing line will
be rare, and even if it did exist its position would be
unknown. It is, however, quite easy to rearrange the
items in such a way that a dividing line is brought into
existence, and its position is known. The method of
doing this has been given the name partition. The
description given below is adapted for a computer
which has an exchange instruction: a method more
suited for computers without such an instruction will be
given in the second part of this paper.

The first step of the partition process is to choose a
particular key value which is known to be within the
range of the keys of the items in the segment which is
to be sorted. A simple method of ensuring this is to
choose the actual key value of one of the items in the

segment. The chosen key value will be called the
bound. The aim is now to produce a situation in which

the keys of all items below a certain dividing line are
cqual to or less than the bound. while the keys of all
items above the dividing line are equal to or greater
than the bound. Fortunately, we do not need to know
the position of the dividing line in advance: its position
is determined only at the end of the partition process.
The items to be sorted are scanned by two pointers:
one of them, the lower pointer, starts at the item with
lowest address, and moves upward in the store. while
the other. the upper pointer, starts at the item with the

highest address and moves downward. The lower
pointer starts first. If the item to which it refers has a
key which is equal to or less than the bound, it moves
up to point to the item in the next higher group of
locations. It continues to move up until it finds an
item with key value greater than the bound. In this
case the lower pointer stops, and the upper pointer
starts its scan. If the item to which it refers has a key
which is equal to or greater than the bound, it moves
down to point to the item in the next lower locations.
It continues to move down until it finds an item with
key value less than the bound. Now the two items to
which the pointers refer are obviously in the wrong
positions, and they must be exchanged. After the
exchange. each pointer is stepped one item in its appro-
priate direction, and the lower pointer resumes its
upward scan of the data. The process continues until
the pointers cross each other. so that the lower pointer
refers to an item in higher-addressed locations than the
item referred to by the upper pointer. In this case the
exchange of items is suppressed, the dividing line is
drawn between the two pointers, and the partition
process is at an end.

An awkward situation is liable to arise if the value of
the bound is the greatest or the least of all the key values
in the segment, or if all the key values are equal. The
danger is that the dividing line, according to the rule
given above, will have to be placed outside the segment
which was supposed to be partitioned. and therefore the
whole segment has to be partitioned again. An infinite
cycle may result unless special measures are taken.
This may be prevented by the use of a method which
ensures that at least one item is placed in its correct
position as a result of each application of the partitioning
process. If the item from which the value of the bound
has been taken turns out to be in the lower of the two
resulting segments, it is known to have a key value which
is equal to or greater than that of all the other items of
this segment. It may therefore be exchanged with the
item which occupies the highest-addressed locations in
the segment, and the size of the lower resulting segment
may be reduced by one. The same applies. mutatis
mutandis, in the case where the item which gave the
bound is in the upper segment. Thus the sum of the
numbers of items in the two segments, resulting from
the partitioning process, is always one less than the
number of items in the original segment. so that it is

The Computer Journal, Volume 5, Issue 1, 1962, Pages 10—-16,

6|

020z Asenige £z uo 1senb Aq 8eES6E/0L/1/GAIBIISGE-0]91UE/|UlLI0D W00 dNO"oWepe.)/:Sd]Y WO papecjumoq

Quicksort

» Randomized sorting algorithm

» Based on divide-and-conquer

» divide: pick random element (called pivot)

and partrtion set into

» L: elements less than x

\ J ! JE
» E: elements equal to x B
L

» Gt elements larger than x

» recur: quicksort L and G

» conguer:join L, E and G

62

Quicksort Recursion Tree

(72943761 -12346779)

63

Quicksort Pseudo-Code

function quick _sort(A):
i1f A.length =1
return A

pivot = random element from A
L=11, E=1], G=1]
for each x in A:
1f x < pivot:
L.append(x)

else if x > pivot:

G.append(x)
else E.append(x)
return quick sort(L) + E + quick sort(G)

64

Worst-Case Running Time

» Worst-case for Quicksort

v

when pivot is (unique) min or max element

Erther L or G has size n-1 and the other has size 0

%

» Runtime Is proportional to

Rt =11) + (n=-2) + .. + 2 + 1

v

Which is O (n2)

0 n []

1 n-1 ./ [
2 n-2 ./

ya §
|0)9)

& —
L 2
L 2

Worst-Case Running Time _— =

» Worst-case runtime of Quicksort is O (n2) E

)

» but this only happens if we always pick the min (or max) element as a pivot

» How likely is that!

» each time we pick a pivot, we have probability 1/n of picking the min/max
element

» worst case happens If we keep picking min/max element at every level of the
recursion (remember n gets smaller at each level)

» since each pivot Is chosen independently, the probability of always picking the
min/max element Is

n—2

1 1
Hn—i:a

1=0

66

)

Worst-Case Running Time _— ==

» Worst case Is O(n2) but happens with probability 2/n! E
» for array of size n=100 thisis 2/(9.332x10157)

» SO worst case Is very unlikely
» So what Is the expected runtime of Quicksort!

» The expected runtime of a randomized algorithm s

Z Pr|Alg makes choice c| - Time(Alg with choice c)

all rand choices c

» = If we ran algo. a billion times & took the average runtime

6/

Expected Runtime of Quicksort

v

Assume there are no duplicates (if there are then are even less recursive calls)

v

At each level of recursion, Quicksort can make n different & unique recursive
calls depending on the choice of pivot

» Each choice of pivot produces a “split” (i.e., a partition of sequence into L & G sets)

v

The set of all possible splits are
» split #1: |L|=0 and |G|=n-1 has cost T(0)+T(n-1)
» split #2: |L|=1 and |G|=n-2 has cost T(1)+T(n-2)
Sl

» split #n: |L|=n-1 and |G|=0 has cost T(n-1)+T(0)

v

There are n possible splits...

N/

...and since the split Is chosen uniformly at random...

v

...each split is chosen with probability 1/n

68

Expected Runtime of Quicksort

» Each split is chosen with probability 1/n

» SO expected running time Is
prob of first split cost of first split prob of last split cost of last split
v

-<T(n—1)+T(n—1—(n—1)))

v

(1O +Tm-1)) 4
% i(—I—Tn—l—z)>

» Solution is T(n) =2nlnn = 1.39 - nlog, n = O(nlogn)

) i

\
1
n

Quicksort Pseudo-Code

function quick _sort(A):
i1f A.length =1
return A

pivot = random element from A
L=1[1]1, E=11, G=11 V..

~

for each x in A: e
if x < pivot: Not in place!
L.append(X)
else if x > pivot:
G.append(X)
else E.append(x)
return quick sort(L) + E + quick sort(G)

70

In-Place Quicksort

function quicksort(A, low, high):
1f low < high:

pivotIndex = partition(A, low, high)

quicksort (A, low, pivotIndex — 1)
quicksort (A, pivotIndex + 1, high)

7

In-Place Quicksort

function partition(A, low, high):
pivotIndex = random index between low and high
pivotValue A[pivotIndex]

swap A[pivotIndex] and A[high] # move pivot to end
line = low

for 1 from low to high — 1:
if A[1] <= pivotValue
swap A[line] and A[1]
line++

swap A[line] and A[high] # move the pivot back
return line

75

Merge Sort vs. Quicksort

» Merge sort is worst-case O(n log n)

» Quicksort is expected O(n log n)
» Which Is better?

» In practice quicksort is faster!
» It also uses less space

» constants are better

765

Non-Comparative Sorting

» Comparison-based sorting algorithms can be used on different
types of inputs as long as we can compare them

» Integers, floats, strings, arrays, other objects. ..
» But for certain kinds of inputs, we can sometimes do better

» example: for positive Integers we can use Radix sort

74

Radix Sort

» How would you sort
258391 and 258492/

» compare digit by digit

» the 3 high order digits are same...

» ...SO You keep going until you see that

» ... 3<4 50258391 must be less than 258492

73

Radix Sort

4

» Create an array of 10 buckets

How would you sort an array of numbers between 0 and 97

e ampler[5,1,6,2,3,1] *[1,1,2,3,5,6]

» for each number x, add it to the bucket at index x

0

2

3

4

5

6

2

3

5

6

» What is the runtime!?

» Return concatenation of all buckets (in order)

» printout [1,1]+[2]+[3]+[5]+[6]

» O(n)

76

Pl

| BOBBY
Radix Sort

» Radix sort combines both techniques so
that it can work over multi-digit numbers

» rterate from least significant to most significant digrt
» and use buckets to sort number by current digit

» [akes advantage of
» the “digit=-iness’ of integers

» for every digit there are O(1) number of options

77

Radix Sort

» Sort [273,279,8271,7891,8736,8735]

» Start with lowest-order digit (the 1's place)

» add number to bucket corresponding to that digit

0

1

2

3

4

5

6

7

8

8271

273

8735

8736

279

7891

@ ehcaticnate all buckets

» Now sorted by lowest-order digit

/8

» [8271,7891,273,8735,8736,279]

Radix Sort

» Sort [8271,7891,273,8735,8736,279]

» Start with second lowest-order digit (the 10's place)

» add number to bucket corresponding to that digit

0 1 2 3 4 5 6 Ji 9
8735 8271 7891
8736 273
279

» Concatenate all buckets

» Now sorted by second and lowest-order digit

> [S7HE,S7HE, S2 N, 2 , 2 , 7 SE]

7

Radix Sort

» Sort [8735,8736,8271,273,279,7891]

» Start with third lowest-order digit (the 100's place)

» add number to bucket corresponding to that digit

0 1 2 3 4 5 6 Ji 8
8271 8735|7891
273 8736
279

» Concatenate all buckets

a2kl A A ’ B Ol
» Now sorted by third, second and lowest-order digit

80

Radix Sort

» Sort [8271,0273,0279,8735,8736,7891]

» Start with third lowest-order digit (the 1000's place)

» add number to bucket corresponding to that digit

0 1 2 3 4 5 6 Ji 8 9

273 7891 8271

279 8735
8736

» Concatenate all buckets

» [BN, NS, BRSO , B2 | SFES5| | [BESI6] |
» Now sorted by third, second and lowest-order digit

8|

Radix Sort

function radix_ sort(A):

buckets = array of 10 lists
for place from least to most significant
for each number in A
digit = digit in number at place
buckets[digit].append(number)
A = concatenate all buckets i1n order
empty all buckets
return A

» Very efficient!

» O(nd),where d is number of digits In the largest number

82

More on Radix Sort

» Can be applied to
» positive Integers In base 10 (we just saw this)
» Octals (base 8)
» Hexadecimals (base 16)
» Strings (one bucket for every valid character)

» Number of buckets can be different at each round

» Can represent almost anything as a brt string and then radix
sort with two buckets but

» number of digits will dominate runtime

» for long sequences will be very slow

83

Summary of Sorting Algorithms

Algorithm Time Notes
in-pl
Selection sort O(nz2) N |
slow (good for small inputs)
, in-place
Insertion sort O(n2) _
slow (good for small inputs)
Merge sort O(n log n) fast (good for large inputs)
domized
Quick sort S) ftad .
expected fastest (good for large inputs)
, d is number of digits in largest number
Radix sort O(nd)

basically linear when d is small

84

