
Intro to CS16
CS16: Introduction to Algorithms & Data Structures

Summer 2021

Welcome to CS16!
Join Prismia at https://bit.ly/3tEJxTB

Eid Mubarak!

Feel free to turn your camera on (but you don’t have to)

https://bit.ly/3tEJxTB

Doug Woos

he/him/his

Call me Doug, Professor Woos, etc.

Meet the TAs!

‣ They are great

Algorithms

Data
structures

A problem

6

‣ We have a collection of tasks we want to accomplish

‣ Each task has a priority (1, 2, etc.)

‣ Multiple tasks can have the same priority

‣ Tasks with lower priority numbers need to be done first

‣ In what order should I do these tasks?

‣ Example: email inbox

‣ Question from a colleague about a paper (priority 2)

‣ Urgent message from TAs about class (priority 1)

‣ Good deal on a used banjo (priority 3)

AlgorithmsData structures
how should our data be organized? how should we use our organized data to solve the problem?

A problem

8

‣ We have a collection of tasks we want to accomplish

‣ Some tasks depend on other tasks

‣ Some are independent

‣ In what order should I do these tasks?

‣ Example: I make really good burritos

‣ Need to chop an onion before sautéing it

‣ But, can sauté onion and cook rice simultaneously

‣ BAD: sauté onions, chop onions, cook rice

‣ GOOD: chop onions, cook rice, sauté onions

AlgorithmsData structures
how should our data be organized? how should we use our organized data to solve the problem?

‣ Before 1999

‣ search engines ranked pages using keyword frequency

‣ well-known and worked OK

‣ Larry Page & Sergey Brin (PhD students @ Stanford)

‣ noticed that links were important too!

‣ links convey information about importance

‣ But what exactly? and how can you make use of it?

‣ This lead them to design PageRank

10

Another example: PageRank

CS16 topics
‣ Implementing data structures and algorithms

‣ Analyzing data structures and algorithms

‣ Designing data structures and algorithms

11

Analysis: what makes an algorithm “good?”

12

CS is diverse

Data structures

&

Algorithms

OS

Networking

Soft. Eng.

AI

Crypto &
Security

Graphics
& Vision

PL

How CS16 works

(briefly)

Course Page
‣ Missive & Policies

‣ Slides

‣ Lecture capture

‣ Announcements

‣ Helpful Documents

‣ Java, Latex & Python tips

‣ Guides for testing, readmes, working from home, …

15

Lectures
‣ Cover various algorithms & data structures

‣ How they work

‣ Why they work

‣ Analysis

‣ Activities & discussions

‣ You are responsible for content in lecture

(whether on slides or not)

16

Textbook
‣ No required textbook

‣ Helpful

‣ Algorithms by Dasgupta, Papadimtriou and Vazirani

‣ Algorithms Illuminated 1, 2 & 3 by Roughgarden

17

Free pdf! $16.68 $17.09 $11.99

Ed
‣ Announcements

‣ Questions and answers

‣ Links to helpful material (blogs, Youtube videos)

18

Sections
‣ 1 hour/week with TAs

‣ 6-10 students

‣ Required!
‣ Mini assignments

‣ Mentor

19

Office Hours
‣ TA hours are very helpful

‣ Try to get unstuck on your own first

‣ TAs will ask you what you tried…

‣ … and send you back if you didn’ t try anything

‣ Doug’s hours: Tuesdays 2:30-4:30 on Zoom

‣ Open Zoom call

‣ Come with conceptual questions, career questions, study/debugging skills

questions, etc.

‣ Also available by appointment

‣ Questions about HW or projects:

‣ Post on Ed

‣ Ask in Section

‣ Hours

20

Assignments
‣ Homeworks

‣ Due every(ish) week

‣ Python code, proofs, analysis, …

‣ Projects

‣ 4 over the whole semester

‣ Larger-scale Java programming

‣ Online midterm and final

21

Email Policy
‣ Unless matter is private always email HTAs!

‣ Your email can get lost in Doug’s inbox

‣ It may take me a while to get to your email

‣ HTAs may get to it faster & will remind me

22

Seam carving

our first algorithm!

Why seam carving?
‣ A cool algorithm with interesting applications

‣ Leads us into analysis of algorithms in general

‣ We’ll develop the tools we need over the next several

lectures

‣ For now, just try to understand what it’s doing and why
it works!

25

26

27

Image Resizing

‣ Preserve important elements

‣ Remove/reduce repetitive areas

28

Image Resizing

29

Fail SuccessFail Fail

Image Resizing
‣ To shrink image

‣ remove unimportant pixels

‣ Quantify pixel importance
‣ How much it varies from neighbors

‣ Sum of differences with horizontal & vertical neighbors

30

Image Resizing
‣Grayscale 3x3 image with the following pixel intensities

‣ Importance of the center pixel?

31

4 6 5

2 5 7

3 2 6

Image Resizing
‣Quantify importance of every pixel

‣Determine most and least important pixels

32

Low High

Image Resizing: Approach 1
‣ Remove all pixels with importance below some threshold

‣ Problem?

‣ removing different # of pixels from each row

‣ causes jagged right side

33

Image Resizing: Approach 2
‣ Remove n least important pixels in each row

‣ Still not great, too much shifting between adjacent rows

34

Image Resizing: Approach 3
‣ Remove column whose total importance is smallest, and repeat

‣Much better! But not perfect…

35

Image Resizing
‣Problem

‣ removing entire column or entire row can distort image

‣What pixels should we remove to resize this image?

36

Seam carving

‣ Idea: remove seams not columns

‣ (vertical) seam is a path from top to bottom

‣ that moves left or right by at most one pixel per row

38

Seam carving

39

=

Near Perfection!

Object Removal via seam carving

‣Mark object to remove as “unimportant”

‣ artificially deflate the importance of its pixels

‣ Pixels will be removed by algorithm

40

Seam carving
‣ Input

‣ 2D array of importance values

‣ Output

‣ Vertical seam with lowest importance

41

7x3 Importance Array

42

9 3 8 15 1 11 7

6 13 9 5 10 4 14

9 6 7 9 14 7 11

7x3 Importance Array

43

9 3 8 15 1 11 7

6 13 9 5 10 4 14

9 6 7 9 14 7 11

10x10 Importance Array

44

1 2 6 9 12 6 5 12 5 6

2 3 11 14 10 6 15 9 9 1

2 9 13 4 1 7 10 4 12 11

6 5 15 12 11 4 7 15 8 5

14 15 11 12 4 14 3 10 1 10

6 12 13 8 15 6 13 3 13 11

2 1 14 6 14 4 13 14 7 4

14 8 4 11 14 6 12 10 2 7

6 8 12 13 2 11 6 6 8 7

11 2 15 9 8 12 10 8 6 9

10x10 Importance Array

45

1 2 6 9 12 6 5 12 5 6

2 3 11 14 10 6 15 9 9 1

2 9 13 4 1 7 10 4 12 11

6 5 15 12 11 4 7 15 8 5

14 15 11 12 4 14 3 10 1 10

6 12 13 8 15 6 13 3 13 11

2 1 14 6 14 4 13 14 7 4

14 8 4 11 14 6 12 10 2 7

6 8 12 13 2 11 6 6 8 7

11 2 15 9 8 12 10 8 6 9

Seams
‣ Approximately Cx3R seams in CxR image

‣ For 10x10
‣ ≈ 590,490 seams

‣ For 500x500
‣ ≈ 1.81801…x10241 seams (242 digits)

‣ Age of the Universe

‣ 4.3x1017 seconds

46

Seam carving
‣ Invented by

‣ Shai Avidan (MERL)

‣ Ariel Shamir (Interdisciplinary Center, Herzliya)

‣ Published at SIGGRAPH 2007

‣ Very fast

‣ ~1 second to find the best seam on 800x533 image

‣ “Content aware scaling” in Photoshop, others

47

The Seam carving Algorithm
‣ Function find_least_important_seam(vals)

‣ input: vals is a 2D array of importance values

‣ output: sequence of column indices that represents a seam

48

[[- S - -],  
 [S - - -],	

 [- S - -],

 [- - S -]]  

[1, 0, 1, 2]

7x7 Importance Array

49

13 3 1 10 8 11 4

6 10 4 11 12 5 10

1 6 14 10 7 14 7

14 12 10 15 13 3 8

9 3 8 15 1 11 7

6 13 9 5 10 4 14

9 6 7 9 14 7 11

Seam = [6,5,4,5,4,5,5]

Data Structures Needed
‣ costs: 2D array filled in from bottom to top

‣ costs[row][col]: importance of lowest-cost seam starting at row & col

‣ dirs: 2D array filled in at the same time as costs

‣ dirs[row][col]: direction (-1,0,1) of next pixel in lowest-cost seam
starting at row & col

3 6 8

5 7 2

4 9 3

9 10

4 9 3

0 1 0

- - -

vals costs dirs

Data Structures Needed

3 6 8

5 7 2

4 9 3

9 10

4 9 3

0 1 0

- - -

vals costs dirs

costs[row][col] = min(costs[row+1][col-1],

 costs[row+1][col],

 costs[row+1][col+1])

 + vals[row][col]

dirs[row][col] = -1 if min is costs[row+1][col-1]

 0 if min is costs[row+1][col]

 +1 if min is costs[row+1][col+1]

Simulating seam carving

3 6 8

5 7 2

4 9 3 4 9 3

vals costs dirs

Finding Least Important Seam
‣ Once costs is completely filled in

‣ cell in top row with minimum value is the first pixel in

least important seam

‣ Starting from that pixel

‣ follow directions in dirs to find least important seam

‣ and build its column index representation

53

Seamcarve Pseudocode

54

function find_least_important_seam(vals):

 dirs = 2D array with same dimensions as vals

 costs = 2D array with same dimensions as vals

 costs[height-1] = vals[height-1] // initialize bottom row of costs

 for row from height-2 to 0:

 for col from 0 to width-1:

 costs[row][col] = vals[row][col] +

 min(costs[row+1][col-1],

 costs[row+1][col],

 costs[row+1][col+1])

 dirs[row][col] = -1, 0, or 1 // depending on min

 // Find least important start pixel

 min_col = argmin(costs[0]) // Returns index of min in top row

 // Create vertical seam of size ‘height’ by tracing from top

 seam = []

 seam[0] = min_col

 for row from 0 to height-2:

 seam[row+1] = seam[row] + dirs[row][seam[row]]

 return seam

What’s argmin?
‣ What does min do?

‣ returns minimum output of a function

‣ What does argmin do?

‣ given function f(x) returns x that minimizes f(x)

‣ f(x) = -1+x2

‣ min f = -1

‣ argmin f = 0 // value for which f is -1

‣ Array A = [5,4,1,3,9]
‣ min(A) = 1

‣ argmin(A) = 2 // the index of the minimum value

55

How fast is this algorithm?

56

function find_least_important_seam(vals):

 dirs = 2D array with same dimensions as vals

 costs = 2D array with same dimensions as vals

 costs[height-1] = vals[height-1] // initialize bottom row of costs

 for row from height-2 to 0:

 for col from 0 to width-1:

 costs[row][col] = vals[row][col] +

 min(costs[row+1][col-1],

 costs[row+1][col],

 costs[row+1][col+1])

 dirs[row][col] = -1, 0, or 1 // depending on min

 // Find least important start pixel

 min_col = argmin(costs[0]) // Returns index of min in top row

 // Create vertical seam of size ‘height’ by tracing from top

 seam = []

 seam[0] = min_col

 for row from 0 to height-2:

 seam[row+1] = seam[row] + dirs[row][seam[row]]

 return seam

References
‣ Slide #5

‣ A statue of Muhammad ibn Musa al-Khwarizmi; a

persian scholar from the 9th century

‣ “Algorithms” is derived from “Algoritmi” which is the

Latin translation of his name

‣ Worked in mathematics, astronomy and geometry

‣ Founded the field of Algebra

57

