Outline

- Priority Queues
 - Motivation
 - ADT
 - Implementation
- Heaps
 - insert() and upheap()
 - removeMin() and downheap()
Motivation

- Priority queues store items with various priorities
- Priority queues are everywhere
 - Plane departures: some flights have higher priority than others
 - Bandwidth management: real-time traffic like Skype transmitted first
- Student dorm room allocations
- ...
Priority Queue ADT

- Stores key/element pairs
 - key determines position in queue
- `insert(key, element)`:
 - inserts element with key
- `removeMin()`:
 - removes pair w/ smallest key and returns element
Priority Queue Implementations

Activity #1

2 min
Priority Queue Implementations

Activity #1
Priority Queue Implementations
Priority Queue Implementation

<table>
<thead>
<tr>
<th>Implementation</th>
<th>insert</th>
<th>removeMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Hash Table</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Heap</td>
<td>$O(log \ n)$</td>
<td>$O(log \ n)$</td>
</tr>
</tbody>
</table>
What is a Heap?

- Data structure that implements priority queue
- Heaps can be implemented with
 - Tree
 - Array
- Tree-based heap

```
2
/   \
5   6
/ \   /
9  7 ``
```

Heap Properties

- Binary tree
 - each node has at most 2 children
- Each node has a priority (key)
- Heap has an order
 - min-heap: n.parent.key \leq n.key
 - max-heap: n.parent.key \geq n.key
- Left-complete
- Height of $O(\log n)$
Heap Properties

- To implement priority queue
 - insert key/element pair at each node
Heap: **insert**

- Need to keep track of “insertion node”
 - leaf where we will insert new node…
 - …so we can keep heap left-complete
Heap: \textit{insert}

- Ex: \textit{insert}(1)
 - replace insertion node w/ new node

![Heap diagram]

Heap order violated!
Heap: \textit{upheap}

- Repair heap: swap new element up tree until keys are sorted
- First swap fixes everything below new location
 - since every node below 6’s old location has to be at least 6…
 - …they must be at least 1
Heap: upheap

- One more swap since $1 \leq 2$
- Now left-completeness and order are satisfied
Heap: insert

Activity #1

2 min
Heap: insert

Activity #2

2 min
Heap: `insert`

Activity #1

1 min
Heap: insert

Activity #1
Heap: **upheap** Summary

- After inserting a key k, order may be violated
- **upheap** restores order by
 - swapping key upward from insertion node
 - terminates when either the root is reached...
 - …or some node whose parent has key less or equal than k
- Heap insertion has runtime
 - $O(\log n)$, why?
 - because heap has height $O(\log n)$
 - perfect binary tree with n nodes has height $\log(n+1) - 1$
Heap: `removeMin`

- Remove root
 - because it is always the smallest element
- How can we remove root w/o destroying heap?
Heap: `removeMin`

- Instead swap root with last element & remove it
 - removing last element is easy
Heap: \texttt{removeMin}

- Now swap root down as necessary

Heap is in order!
Heap: downheap Summary

- **downheap** restores order by
 - swapping key downward from the root...
 - …with the smaller of 2 children
 - terminates when either a leaf is reached or
 - …some node whose children has key k or more

- **downheap** has runtime
 - $O(\log n)$, why?
 - because heap has height $O(\log n)$
Heap: \texttt{removeMin}

2 min

Activity #1
Heap: \texttt{removeMin}

\textbf{Activity \#1}

2 min
Heap: removeMin

Activity #1
Heap: `removeMin`
Summary of Heap

- **insert**(key, value)
 - insert value at insertion node
 - insertion node must be kept track of
 - **upheap** from insertion node as necessary

- **removeMin**()
 - swap root with last item
 - delete (swapped) last item
 - **downheap** from root as necessary
Array-based Heap

- Heap with \(n \) keys can be represented w/ array of size \(n+1 \)
- Storing nodes in array
 - Node stored at index \(i \)
 - left child stored at index \(2i \)
 - right child stored at index \(2i+1 \)
 - Leaves & edges not stored
 - Cell 0 not used
- Operations
 - insert: store new node at index \(n+1 \)
 - removeMin: swap w/ index \(n \) and remove
Finding Insertion Node

- Can be found in $O(\log n)$
- Start at last added node
- Go up until a left child or root is reached
- If left child
 - go to sibling (corresponding right child)
 - then go down left until leaf is reached

Can be done in $O(1)$ time by using additional data structure...need this for project!
Priority Queue Implementation

<table>
<thead>
<tr>
<th>Implementation</th>
<th>insert</th>
<th>removeMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Hash Table</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Heap</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>
References

‣ Slide #4
 ‣ “Queue” in French means tail
 ‣ The picture depicts the tail of a whale

‣ Slide #7
 ‣ The picture is of a Transformers character named Junkheap which transforms from a waste management garbage truck

‣ Slide #8
 ‣ The names are characters from the Anime series Naruto (https://en.wikipedia.org/wiki/Naruto)
 ‣ The picture is the symbol of the Hidden Leaf Village (where the character Naruto is from)
 ‣ The heap priorities represent the importance of the character in the village