
Binary Search Trees
CS16: Introduction to Data Structures & Algorithms

Summer 2021

New Homework 6
‣ Optional
‣ Out end of week, due June 28
‣ Mostly questions reviewing previous material
‣ Good practice for midterm! (June 30-July 2)

‣ If you hand it in, will replace your lowest grade
from HW1-5

2

Other feedback
‣ Will post lecture slides before lecture
‣ But—I encourage paper/pen (or possibly tablet

equivalents) note-taking

‣ Concerns about cut material
‣ Not cutting anything crucial
‣ Will post old slides, etc.

‣ Leaving recording on after lecture
‣ Not going to do this—“after-class” environment

3

Midterm
‣ Covers everything up through today, HW1-5
‣ Mostly open-ended problems (think written

homeworks but somewhat simplified)
‣ Closed-book, closed-note
‣ Designed to take 1.5-2 hours, you’ll have 3
‣ Available between June 30-July 2, online
‣ HW6 (optional) due June 28, next assignment out July

8
‣ Previous midterms available soon

4

A note on testing

5

Our tests

Our
implementations

Your
implementation

Your tests

Local testing

Early submission to
Gradescope

Grading

Problem solving session
‣ Today in my hours (will start around 2:45)
‣ We will solve a homework-style programming

problem together
‣ Will demo good testing, problem-solving,

debugging techniques
‣ Will be recorded but will be more fun/useful if

there’s an audience—can ask your debugging
questions!

6

Binary Search Trees
‣ Binary trees with special property
‣ For each node
‣ left descendants have lower value than node

‣ right descendants have higher value than node

‣ In-order traversal gives nodes in order

7

Searching a BST

‣ Find 11
‣ Each comparison tells us whether to go left or right

8

13

7 20

15 245 10

8 11

11 < 13

11 > 7

11 > 10

Binary Search Tree — Find()

9

function find(node, toFind):
 if node.data == toFind:
 return node

 else if toFind < node.data and node.left != null:
 return find(node.left, toFind)

 else if toFind > node.data and node.right != null:
 return find(node.right, toFind)

 return null

Binary Search Tree — Insert()

10

function insert(node, toInsert):
if node.data == toInsert: # data already in tree

return

if toInsert < node.data:
if node.left == null: # add as left child

node.addLeft(toInsert)
else:

insert(node.left, toInsert)
else:

if node.right == null: # add as right child
node.addRight(toInsert)

else:
insert(node.right, toInsert)

Removing from a BST
‣ Can be tricky

‣ Three cases to consider

‣ Removing a leaf: easy, just do it

‣ Removing internal node w/ 1
child (e.g., 15)

‣ Removing internal node w/ 2
children (e.g., 7)

13

7 20

15 245 10

8 11 17

Removing from a BST - Case #2
‣ Removing internal node w/ 1 child

‣ Strategy

‣ “Splice out” node by connecting
its parent to its child

‣ Example: remove 15

‣ set parent’s left child to 17

‣ set 17’s parent to 20

‣ BST order is maintained

13

7 20

15 245 10

8 11 17

Removing from a BST - Case #3
‣ Removing internal node w/ 2 children

‣ Replace node w/ successor

‣ successor: next largest node

‣ Delete successor

‣ Successor a.k.a. the
in-order successor

‣ Example: remove 7

‣ What is successor of 7?

13

7 20

17 245 10

8 11

9

Removing from a BST - Case #3
‣ Since node has 2 children…

‣ …it has a right subtree

‣ Successor is leftmost node
in right subtree

‣ 7’s successor is 8

13

7 20

17 245 10

8 11

9

successor(node):
curr = node.right
while (curr.left != null):

curr = curr.left
return curr

Removing from a BST - Case #3
‣ Now, replace node with successor

‣ Observation

‣ Successor can’t have left sub-tree

‣ …otherwise its left child
would be successor

‣ so successor only has right child

‣ Remove successor using
Case #1 or #2

‣ Here, use case #2 (internal w/ 1 child)

‣ Successor removed and BST order restored

13

7 20

17 245 10

8 11

9

8

Binary Search Tree — Remove()

16

function remove(node):
if node has no children: # case 1

node.parent.removeChild(node)
else if node only has left child: # case 2a

if node.parent.left == node: # node is a left child
node.parent.left = node.left

else:
node.parent.right = node.left

else if node only has right child: # case 2b
if node.parent.left == node:

node.parent.left = node.right
else:

node.parent.right = node.right
else: # case 3 (node has two children)

nextNode = successor(node)
node.data = nextNode.data #replace w/ nextNode
remove(nextNode) # nextNode has at most one child

Binary Search Tree — Remove()

17

13

20

17 245 10

119

8

Remove 13

Successor vs. Predecessor
‣ In Remove()
‣ OK to remove in-order predecessor

instead of in-order successor

‣ Randomly picking between the two keeps tree
balanced

‣ In Case #3
‣ Predecessor is rightmost node of left subtree

18

Implementing Set
‣ Store set elements in BST, one per node

‣ add(object):

‣ insert object into BST at the right place

‣ remove(object):

‣ remove object from BST

‣ boolean contains(object):

‣ search BST for object
19

Which objects?
‣ Say we have a kind of object we want to store

in our Set
‣ e.g. integers, strings, or a class we’ve build

‣ What do we need in order to use a hash-based
set?

‣ A hash function!
‣ What about a BST?

20

Which objects?
‣ Say we have a kind of object we want to store

in our Set
‣ e.g. integers, strings, or a class we’ve build

‣ What do we need in order to use a hash-based
set?

‣ A hash function!
‣ What about a BST?
‣ Need an ordering on elements

21

Range queries
‣ Additional operation on sets
‣ between(object1, object2):

‣ returns all items o where
object1 <= o < object2

‣ How to implement with a hash-based set?

22

Range queries
‣ Additional operation on sets
‣ between(object1, object2):

‣ returns all items o where
object1 <= o < object2

‣ How to implement with a hash-based set?

‣ Have to look at all items, O(n)
(where n is the size of the set)

23

Range queries
‣ Additional operation on sets
‣ between(object1, object2):

‣ returns all items o where
object1 <= o < object2

‣ How to implement with a hash-based set?

‣ Have to look at all items, O(n)
(where n is the size of the set)

24

Range queries

25

13

20

17 245 10

119

8

between(6, 10)

Range queries

26

13

20

17 245 10

119

8

between(6, 10)

output

Range queries

27

13

20

17 245 10

119

8

between(6, 10)

output

“boundary”

Binary Search Tree — between()

28

function between(node, object1, object2):
if object1 <= node.data < object2:
 output node.data
 if node has left child:
 between(node.left, object1, object2)
 if node has right child:
 between(node.right, object1, object2)
else if node.data >= object2 and node has left child:
 between(node.left, object1, object2)
else if node.data < object1 and node has right child:
 between(node.right, object1, object2)

Range queries
‣ What’s the worst-case runtime of
between(object1, object2) on a tree-
based set with n elements?

‣ Depends on the output size
‣ Definitely at least O(m) if m elements between

object1 and object2
‣ Turns out to be O(m + tree height)

29

Implementing Dictionary
‣ Just like with hashing, can implement Dictionary

as well as Set
‣ Store keys and values at nodes, use keys as

ordering

30

Binary Search Tree Analysis
‣ How fast are BST

operations?
‣ Given a tree, what is the worst-

case node to find/remove?

‣ What is the best-case tree?
‣ a balanced tree

‣ What is the worst-case tree?

‣ a completely unbalanced tree
B

A

D

C

13

7 20

15 245 10

Binary Search Trees — Rotations
‣ We can re-balance unbalanced trees w/ tree rotations

32

A

B C

A

B

C

A

B

C

A CB

‣ In-order traversal of all 3 trees is

‣ so BST order is preserved

Beyond CS16,
But good to

know

