Binary Search [rees

CST6: Introduction to Data Structures & Algorithms
Spring 2020

Outline

» Binary Search Trees

» Searching BSTs
» Adding to BSTs

» Removing from BSTs

» BST Analysis

by CynthT
http://cyntht.deviantart.com/

» Balancing BSTs

http://cyntht.deviantart.com/art/Green-Dragon-and-Rowan-Tree-90402529

Binary Search Irees

» Binary trees with special property

» For each node

» |left descendants have lower value than node

» right descendants have higher value than node

» In-order traversal gives nodes in order

Searching a BST

» Find 11

» Each comparison tells us whether to go left or right

4

Searching a BST

" reached leaf w/o finding
it so not In tree

» What If tem i1sn't in tree?

» Find 14

Binary Search Iree — Find()

function find(node, toFind):
if node.data == toFind:
return node

else if toFind < node.data and node.left != null:
return find(node.left, toFind)

else i1f toFind > node.data and node.right != null:

return find(node.right, toFind)

return null

Inserting ina BST

» Jo Insert, perform a search and add as new leaf

» Insert 17

Binary Search Tree — Insert()

function insert(node, tolInsert):

if node.data == toInsert: # data already in tree

return

i1f toInsert < node.data:
if node.left == null: # add as left child
node.addLeft(toInsert)
else:
insert(node.left, toInsert)
else:
if node.right == null: # add as right child
node.addRight (toInsert)
else:
insert(node.right, toInsert)

Removing from a BST

@t De Tricky
» [hree cases to consider

» Removing a leaf: easy, just do It

» Removing internal node w/ 1
child (e.g,, 15)

» Removing internal node w/ 2
children (e.g., 7)

Removing from a BST - Case #2

» Removing internal node w/ 1 child
» Strategy

» “Splice out’ node by connecting Its
parent to Its child

» Example: remove 15

i
» set parent’s left pointerto |/
» remove |5's pointer a

» No more references to |5 so erased
(garbage collected)

» BST order s maintained

Removing from a BST - Case #3

» Removing internal node w/ 2 children
» Replace node w/ successor
» successor: next largest node

» Delete successor

» Successor a.k.a. the
IN-order successor

» Example: remove 7

» What Is successor of 77

Removing from a BST - Case #3

» Since node has 2 children...
» ...t has a right subtree

» Successor Is leftmost node
N right subtree

» 7’s successor s 8

successor (node):
curr = node.right

while (curr.left != null):

curr = curr.left

return curr

Removing from a BST - Case #3

» Now, replace node with successor

» Observation

» Successor can't have left sub-tree

» ...otherwise Its left child
would be successor

» SO successor only has right child

» Remove successor using
Case #1 or #2

» Here, use case #2 (internal w/ 1 child)

» Successor removed and BST order restored

Binary Search ITree — Remove()

function remove(node):
if node has no children: # case 1
node.parent.removeChild(node)
else if node only has left child: # case 2a
1f node.parent.left == node: # node is a left child
node.parent.left = node.left
else:
node.parent.right = node.left
else if node only has right child: # case 2b
1f node.parent.left == node:
node.parent.left = node.right
else:
node.parent.right = node.right
else: # case 3 (node has two children)
nextNode = successor (node)

node.data = nextNode.data #replace w/ nextNode

remove (nextNode) # nextNode has at most one child

Successor vs. Predecessor

» In Remove()

» OK to remove in-order predecessor
iNnstead of In-order successor

» Ra
Ha

ndom

dNced

y picking between the two keeps tree

» In Case #3

» Predecessor Is rightmost node of left subtree

Binary Search ITree — Remove()

2 o Activity #I

Binary Search ITree — Remove()

2 o Activity #I

Binary Search ITree — Remove()

Activity #I

ny

Binary Search ITree — Remove()

Activity #I

b i

Binary Search Iree Analysis

» How fast are BST
operations!

» Given a tree, what Is the worst-
case node to find/remove!

» What Is the best-case tree!

» a balanced tree

» What Is the worst-case tree!

» a completely unbalanced tree

Binary Search Irees — Rotations

» Ve can re-balance unbalanced trees w/ tree rotations

» In-order traversal of all 3 trees Is Beyond CS |6,

ABABAC

B eaboil orcer Is preserved |

But good to
know

