
Binary Search Trees
CS16: Introduction to Data Structures & Algorithms

Spring 2020

Outline
‣ Binary Search Trees

‣ Searching BSTs

‣ Adding to BSTs

‣ Removing from BSTs

‣ BST Analysis

‣ Balancing BSTs

by CynthT
http://cyntht.deviantart.com/

http://cyntht.deviantart.com/art/Green-Dragon-and-Rowan-Tree-90402529

Binary Search Trees
‣ Binary trees with special property
‣ For each node
‣ left descendants have lower value than node

‣ right descendants have higher value than node

‣ In-order traversal gives nodes in order

3

Searching a BST

‣ Find 11
‣ Each comparison tells us whether to go left or right

4

13

7 20

15 245 10

8 11

11 < 13

11 > 7

11 > 10

Searching a BST

‣ What if item isn’t in tree?
‣ Find 14

5

13

7 20

15 245 10

8 11

14 > 13

14 < 20

reached leaf w/o finding
it so not in tree

Binary Search Tree — Find()

6

function find(node, toFind):
 if node.data == toFind:
 return node

 else if toFind < node.data and node.left != null:
 return find(node.left, toFind)

 else if toFind > node.data and node.right != null:
 return find(node.right, toFind)

 return null

Inserting in a BST

‣ To insert, perform a search and add as new leaf
‣ Insert 17

7

13

7 20

15 245 10

8 11

17 > 13

17 < 20

17 > 15

17

Binary Search Tree — Insert()

8

function insert(node, toInsert):
if node.data == toInsert: # data already in tree

return

if toInsert < node.data:
if node.left == null: # add as left child

node.addLeft(toInsert)
else:

insert(node.left, toInsert)
else:

if node.right == null: # add as right child
node.addRight(toInsert)

else:
insert(node.right, toInsert)

Removing from a BST
‣ Can be tricky

‣ Three cases to consider

‣ Removing a leaf: easy, just do it

‣ Removing internal node w/ 1
child (e.g., 15)

‣ Removing internal node w/ 2
children (e.g., 7)

13

7 20

15 245 10

8 11 17

Removing from a BST - Case #2
‣ Removing internal node w/ 1 child

‣ Strategy

‣ “Splice out” node by connecting its
parent to its child

‣ Example: remove 15

‣ set parent’s left pointer to 17

‣ remove 15’s pointer

‣ no more references to 15 so erased
(garbage collected)

‣ BST order is maintained

13

7 20

15 245 10

8 11 17

Removing from a BST - Case #3
‣ Removing internal node w/ 2 children

‣ Replace node w/ successor

‣ successor: next largest node

‣ Delete successor

‣ Successor a.k.a. the
in-order successor

‣ Example: remove 7

‣ What is successor of 7?

13

7 20

17 245 10

8 11

9

Removing from a BST - Case #3
‣ Since node has 2 children…

‣ …it has a right subtree

‣ Successor is leftmost node
in right subtree

‣ 7’s successor is 8

13

7 20

17 245 10

8 11

9

successor(node):
curr = node.right
while (curr.left != null):

curr = curr.left
return curr

Removing from a BST - Case #3
‣ Now, replace node with successor

‣ Observation

‣ Successor can’t have left sub-tree

‣ …otherwise its left child
would be successor

‣ so successor only has right child

‣ Remove successor using
Case #1 or #2

‣ Here, use case #2 (internal w/ 1 child)

‣ Successor removed and BST order restored

13

7 20

17 245 10

8 11

9

8

Binary Search Tree — Remove()

14

function remove(node):
if node has no children: # case 1

node.parent.removeChild(node)
else if node only has left child: # case 2a

if node.parent.left == node: # node is a left child
node.parent.left = node.left

else:
node.parent.right = node.left

else if node only has right child: # case 2b
if node.parent.left == node:

node.parent.left = node.right
else:

node.parent.right = node.right
else: # case 3 (node has two children)

nextNode = successor(node)
node.data = nextNode.data #replace w/ nextNode
remove(nextNode) # nextNode has at most one child

Successor vs. Predecessor
‣ In Remove()
‣ OK to remove in-order predecessor

instead of in-order successor

‣ Randomly picking between the two keeps tree
balanced

‣ In Case #3
‣ Predecessor is rightmost node of left subtree

15

Binary Search Tree — Remove()

16
2 minActivity #1

Binary Search Tree — Remove()

17
2 minActivity #1

Binary Search Tree — Remove()

18
1 minActivity #1

Binary Search Tree — Remove()

19
0 minActivity #1

Binary Search Tree Analysis
‣ How fast are BST

operations?
‣ Given a tree, what is the worst-

case node to find/remove?

‣ What is the best-case tree?
‣ a balanced tree

‣ What is the worst-case tree?

‣ a completely unbalanced tree
B

A

D

C

13

7 20

15 245 10

Binary Search Trees — Rotations
‣ We can re-balance unbalanced trees w/ tree rotations

21

A

B C
A

B

C

A

B

C

A CB

‣ In-order traversal of all 3 trees is

‣ so BST order is preserved

Beyond CS16,
But good to

know

