
Priority Queues

& Heaps

CS16: Introduction to Data Structures & Algorithms

Summer 2021

Why trees, revisited

2

‣ Trees: natural representation of hierarchical data

‣ Expression trees, directories, parse trees, etc.

‣ Also used for organizing data that aren’t inherently hierarchical

‣Why?

‣ Consider a perfect binary tree with N nodes

‣Height is log N

B

Why trees, revisited

3

‣ Two operations:

‣Operation 1 looks at every node in the tree once, doing a

constant amount of work per node. Runtime?

‣Operation 2 looks at every level of the tree once, doing a

constant amount of work per level. Runtime?

B

Motivation
‣ Priority queues store items with various priorities

‣ Priority queues are everywhere

‣ Plane departures: some flights have higher priority than
others

‣ Bandwidth management: real-time traffic like Skype
transmitted first

‣ Student dorm room allocations

‣ …

4

Priority Queue ADT

‣ Stores key/element pairs

‣ key determines position in queue

‣ insert(key, element):

‣ inserts element with key

‣ removeMin():

‣ removes pair w/ smallest key and

returns element

Using a priority queue
PQ = PriorityQueue

PQ.insert(2, “Practice banjo”)

PQ.insert(1, “Prepare lecture”)

PQ.insert(3, “Eat avocado”)

PQ.removeMin()

PQ.removeMin()

PQ contents:

Using a priority queue
PQ = PriorityQueue

PQ.insert(2, “Practice banjo”)

PQ.insert(1, “Prepare lecture”)

PQ.insert(3, “Eat avocado”)

PQ.removeMin()

PQ.removeMin()

PQ contents:

(2, “Practice banjo”)

Using a priority queue
PQ = PriorityQueue

PQ.insert(2, “Practice banjo”)

PQ.insert(1, “Prepare lecture”)

PQ.insert(3, “Eat avocado”)

PQ.removeMin()

PQ.removeMin()

PQ contents:

(2, “Practice banjo”)

(1, “Prepare lecture”)

Using a priority queue
PQ = PriorityQueue

PQ.insert(2, “Practice banjo”)

PQ.insert(1, “Prepare lecture”)

PQ.insert(3, “Eat avocado”)

PQ.removeMin()

PQ.removeMin()

PQ contents:

(2, “Practice banjo”)

(1, “Prepare lecture”)

(1, “Eat avocado”)

Using a priority queue
PQ = PriorityQueue

PQ.insert(2, “Practice banjo”)

PQ.insert(1, “Prepare lecture”)

PQ.insert(3, “Eat avocado”)

PQ.removeMin()

PQ.removeMin()

PQ contents:

(2, “Practice banjo”)

(1, “Eat avocado”)

Using a priority queue
PQ = PriorityQueue

PQ.insert(2, “Practice banjo”)

PQ.insert(1, “Prepare lecture”)

PQ.insert(3, “Eat avocado”)

PQ.removeMin()

PQ.removeMin()

PQ contents:
(1, “Eat avocado”)

Naive PQ implementation

‣ Store elements in an expandable array
called data

‣ insert(key, element):

‣ add (key, element) to end of data

‣ removeMin():

‣ scan through data, remove and return
element with smallest key

‣ Runtimes?

O(1)

O(n)

Heaps!

13

‣ Tree-based PQ implementation

‣ Data structure, not an ADT

‣ Heaps are to PQs as Hash tables are to

dictionaries
(1, Lecture)

(2, Banjo) (3, Avocado)

(7, Dry cleaning) (5, Haircut)

Heap Properties
‣ Binary tree

‣ each node has at most 2 children

‣ Each node has a priority (key)

‣ Heap has an order

‣ min-heap: n.parent.key ≤ n.key

‣ Left-complete

‣ Height of O(log n)

14

Valid heaps?

15

2

75

63

2

65

79

Heap A

Heap B

Valid heaps?

16

2

75

63

2

65

79

Heap A

Heap B

No

Yes

Heap: insert
‣ Need to keep track of “insertion node”

‣ leaf where we will insert new node…

‣ …so we can keep heap left-complete

17

2

65

79

insertion node

Heap: insert
‣ Ex: insert(1)

‣ replace insertion node w/ new node

18

2

65

79 1

Heap order
violated!

Heap: upheap
‣ Repair heap: swap new element up tree until keys are sorted

‣ First swap fixes everything below new location

‣ since every node below 6’s old location has to be at least 6…

‣ …they must be at least 1

19

2

15

79 6

Heap: upheap
‣ One more swap since 1≤2
‣ Now left-completeness and order are satisfied

20

1

25

79 6

Heap: insert
‣ Ex: insert(3)

21

1

25

79 6 3

Heap: insert
‣ Ex: insert(8)

22

1

25

79 6 3

Heap: insert
‣ Ex: insert(8)

23

1

25

79 6 3

Heap: insert
‣ Ex: insert(8)

24

1

25

78 6 3

9

Heap: upheap Summary
‣ After inserting a key k, order may be violated

‣ upheap restores order by

‣ swapping key upward from insertion node

‣ terminates when either the root is reached…

‣ …or some node whose parent has key less or equal than k

‣ Heap insertion has runtime

‣ O(log n), why?

‣ because heap has height O(log n)

‣ perfect binary tree with n nodes has height log(n+1)-1
25

Heap: removeMin
‣ Remove root

‣ because it is always the smallest element

‣ How can we remove root w/o destroying heap?

26

1

25

79 6

25

79 6

Heap
destroyed!

Heap: removeMin
‣ Instead swap root with last element & remove it

‣ removing last element is easy

27

1

25

79 6

6

25

79 1

Order
destroyed!

6

25

79

Heap: removeMin
‣ Now swap root down as necessary

28

Heap is in
order!

6

25

79

2

65

79

Heap: downheap Summary
‣ downheap restores order by

‣ swapping key downward from the root…

‣ …with the smaller of 2 children

‣ terminates when either a leaf is reached or

‣ …some node whose children have key k or more

‣ downheap has runtime

‣ O(log n), why?

‣ because heap has height O(log n)
29

Summary of Heap
‣ insert(key, value)

‣ insert value at insertion node

‣ insertion node must be kept track of

‣ upheap from insertion node as necessary

‣ removeMin()

‣ swap root with last item

‣ delete (swapped) last item

‣ downheap from root as necessary
30

Finding Insertion Node
‣ Can be found in O(log n)
‣ Start at last added node

‣ Go up until a left child or root is reached

‣ If left child

‣ go to sibling (corresponding right child)

‣ then go down left until leaf is reached

31

Can be done in O(1)
time by using

additional data
structure…need this

for project!

Array-based Heap
‣ Heap with n keys can be represented  

w/ array of size n+1

‣ Storing nodes in array

‣ Node stored at index i

‣ left child stored at index 2i

‣ right child stored at index 2i+1

‣ Leaves & edges not stored

‣ Cell 0 not used

‣ Operations

‣ insert: store new node at index n+1

‣ removeMin: swap w/ index n and remove

2

65

79

2 5 6 9 7
0 1 2 3 4 5

