Priority Queues
& Heaps

CS16: Introduction to Data Structures & Algorithms
Summer 2021
Why trees, revisited

- Trees: natural representation of hierarchical data
 - Expression trees, directories, parse trees, etc.
- Also used for organizing data that aren’t inherently hierarchical
- Why?
- Consider a perfect binary tree with N nodes
 - Height is $\log N$
Why trees, revisited

- Two operations:
 - Operation 1 looks at every **node** in the tree once, doing a constant amount of work per node. Runtime?
 - Operation 2 looks at every **level** of the tree once, doing a constant amount of work per level. Runtime?
Motivation

- Priority queues store items with various priorities
- Priority queues are everywhere
 - Plane departures: some flights have higher priority than others
 - Bandwidth management: real-time traffic like Skype transmitted first
- Student dorm room allocations
- ...
Priority Queue ADT

- Stores key[element pairs
 - key determines position in queue

- `insert(key, element)`: inserts element with key

- `removeMin()`: removes pair w/ smallest key and returns element
Using a priority queue

```python
PQ = PriorityQueue
PQ.insert(2, "Practice banjo")
PQ.insert(1, "Prepare lecture")
PQ.insert(3, "Eat avocado")
PQ.removeMin()
PQ.removeMin()
```

PQ contents:
Using a priority queue

PQ = PriorityQueue
PQ.insert(2, "Practice banjo")
PQ.insert(1, "Prepare lecture")
PQ.insert(3, "Eat avocado")
PQ.removeMin()
PQ.removeMin()

PQ contents:
(2, "Practice banjo")

PQ contents:
Using a priority queue

PQ = PriorityQueue
PQ.insert(2, "Practice banjo")
PQ.insert(1, "Prepare lecture")
PQ.insert(3, "Eat avocado")
PQ.removeMin()
PQ.removeMin()

(2, "Practice banjo")
(1, "Prepare lecture")

PQ contents:
Using a priority queue

PQ = PriorityQueue
PQ.insert(2, "Practice banjo")
PQ.insert(1, "Prepare lecture")
PQ.insert(3, "Eat avocado")
PQ.removeMin()
PQ.removeMin()

PQ contents:
(2, "Practice banjo")
(1, "Prepare lecture")
(1, "Eat avocado")
Using a priority queue

PQ = PriorityQueue
PQ.insert(2, "Practice banjo")
PQ.insert(1, "Prepare lecture")
PQ.insert(3, "Eat avocado")
PQ.removeMin()
PQ.removeMin()
Using a priority queue

PQ = PriorityQueue
PQ.insert(2, "Practice banjo")
PQ.insert(1, "Prepare lecture")
PQ.insert(3, "Eat avocado")
PQ.removeMin()
PQ.removeMin()

PQ contents:
(1, "Eat avocado")
Naive PQ implementation

- Store elements in an expandable array called \textit{data}

- \texttt{insert(\text{key, element})}: \textbf{O(1)}
 - add \texttt{(key, element)} to end of \textit{data}

- \texttt{removeMin()} : \textbf{O(n)}
 - scan through \textit{data}, remove and return element with smallest key

- Runtimes?
Heaps!

- Tree-based PQ implementation
- **Data structure**, not an ADT
 - Heaps are to PQs as Hash tables are to dictionaries
Heap Properties

- Binary tree
 - each node has at most 2 children
- Each node has a priority (key)
- Heap has an order
 - min-heap: n.parent.key ≤ n.key
- Left-complete
- Height of $O(\log n)$
Valid heaps?

Heap A

Heap B
Valid heaps?

Heap A

Heap B
Heap: **insert**

- Need to keep track of "insertion node"
 - leaf where we will insert new node...
 - ...so we can keep heap left-complete
Heap: `insert`

- Ex: `insert(1)`
 - replace insertion node w/ new node

Heap order violated!
Heap: `upheap`

- Repair heap: swap new element up tree until keys are sorted
- First swap fixes everything below new location
 - since every node below 6’s old location has to be at least 6…
 - …they must be at least 1
Heap: upheap

- One more swap since $1 \leq 2$
- Now left-completeness and order are satisfied
Heap: **insert**

- Ex: insert(3)
Heap: insert

- Ex: insert(8)
Heap: `insert`

- Ex: `insert(8)`
Heap: insert

- Ex: insert(8)
Heap: **upheap** Summary

- After inserting a key k, order may be violated
- **upheap** restores order by
 - swapping key upward from insertion node
 - terminates when either the root is reached…
 - …or some node whose parent has key less or equal than k
- Heap insertion has runtime
 - $O(\log n)$, why?
 - because heap has height $O(\log n)$
 - perfect binary tree with n nodes has height $\log(n+1)-1$
Heap: \texttt{removeMin}

- Remove root
 - because it is always the smallest element
- How can we remove root w/o destroying heap?

![Heap diagram]

Heap destroyed!
Heap: \texttt{removeMin}

- Instead swap root with last element & remove it
 - removing last element is easy

Order destroyed!
Heap: `removeMin`

- Now swap root down as necessary
Heap: **downheap** Summary

- **downheap** restores order by
 - swapping key downward from the root...
 - ...with the **smaller** of 2 children
 - terminates when either a leaf is reached or
 - ...some node whose children have key k or more

- **downheap** has runtime
 - $O(\log n)$, why?
 - because heap has height $O(\log n)$
Summary of Heap

- **insert**(key, value)
 - insert value at insertion node
 - insertion node must be kept track of
 - **upheap** from insertion node as necessary

- **removeMin**()
 - swap root with last item
 - delete (swapped) last item
 - **downheap** from root as necessary
Finding Insertion Node

- Can be found in $O(\log n)$
- Start at last added node
- Go up until a left child or root is reached
- If left child
 - go to sibling (corresponding right child)
 - then go down left until leaf is reached

Can be done in $O(1)$ time by using additional data structure...need this for project!
Array-based Heap

- Heap with \(n \) keys can be represented w/ array of size \(n+1 \)
- Storing nodes in array
 - Node stored at index \(i \)
 - left child stored at index \(2i \)
 - right child stored at index \(2i+1 \)
 - Leaves & edges not stored
 - Cell 0 not used
- Operations
 - insert: store new node at index \(n+1 \)
 - removeMin: swap w/ index \(n \) and remove