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Why trees, revisited
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‣ Trees: natural representation of hierarchical data
‣ Expression trees, directories, parse trees, etc.

‣ Also used for organizing data that aren’t inherently hierarchical
‣Why?
‣ Consider a perfect binary tree with N nodes
‣Height is log N
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Why trees, revisited
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‣ Two operations:
‣Operation 1 looks at every node in the tree once, doing a 

constant amount of work per node. Runtime?
‣Operation 2 looks at every level of the tree once, doing a 

constant amount of work per level. Runtime?
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Motivation
‣ Priority queues store items with various priorities

‣ Priority queues are everywhere

‣ Plane departures: some flights have higher priority than 
others

‣ Bandwidth management: real-time traffic like Skype 
transmitted first

‣ Student dorm room allocations

‣ …
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Priority Queue ADT

‣ Stores key/element pairs
‣ key determines position in queue

‣ insert(key, element): 
‣ inserts element with key

‣ removeMin( ):
‣ removes pair w/ smallest key and 

returns element



Using a priority queue
PQ = PriorityQueue
PQ.insert(2, “Practice banjo”)
PQ.insert(1, “Prepare lecture”)
PQ.insert(3, “Eat avocado”)
PQ.removeMin()
PQ.removeMin()

PQ contents:
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Using a priority queue
PQ = PriorityQueue
PQ.insert(2, “Practice banjo”)
PQ.insert(1, “Prepare lecture”)
PQ.insert(3, “Eat avocado”)
PQ.removeMin()
PQ.removeMin()

PQ contents:
(1, “Eat avocado”)



Naive PQ implementation

‣ Store elements in an expandable array 
called data

‣ insert(key, element): 

‣ add (key, element) to end of data

‣ removeMin( ):

‣ scan through data, remove and return 
element with smallest key

‣ Runtimes?

O(1)

O(n)



Heaps!
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‣ Tree-based PQ implementation
‣ Data structure, not an ADT
‣ Heaps are to PQs as Hash tables are to 

dictionaries
(1, Lecture)

(2, Banjo) (3, Avocado)

(7, Dry cleaning) (5, Haircut)



Heap Properties
‣ Binary tree
‣ each node has at most 2 children

‣ Each node has a priority (key)
‣ Heap has an order
‣ min-heap: n.parent.key ≤ n.key

‣ Left-complete
‣ Height of O(log n)
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Valid heaps?
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Heap: insert
‣ Need to keep track of “insertion node”
‣ leaf where we will insert new node…
‣ …so we can keep heap left-complete
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Heap: insert
‣ Ex: insert(1)
‣ replace insertion node w/ new node
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Heap order 
violated!



Heap: upheap
‣ Repair heap: swap new element up tree until keys are sorted
‣ First swap fixes everything below new location

‣ since every node below 6’s old location has to be at least 6…

‣ …they must be at least 1
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Heap: upheap
‣ One more swap since 1≤2
‣ Now left-completeness and order are satisfied
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Heap: insert
‣ Ex: insert(3)
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Heap: insert
‣ Ex: insert(8)
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Heap: insert
‣ Ex: insert(8)
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Heap: insert
‣ Ex: insert(8)
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Heap: upheap Summary
‣ After inserting a key k, order may be violated
‣ upheap restores order by 
‣ swapping key upward from insertion node
‣ terminates when either the root is reached…

‣ …or some node whose parent has key less or equal than k

‣ Heap insertion has runtime
‣ O(log n), why?

‣ because heap has height O(log n)

‣ perfect binary tree with n nodes has height log(n+1)-1
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Heap: removeMin
‣ Remove root 
‣ because it is always the smallest element

‣ How can we remove root w/o destroying heap?
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Heap: removeMin
‣ Instead swap root with last element & remove it
‣ removing last element is easy
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Heap: removeMin
‣ Now swap root down as necessary
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Heap is in 
order!
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Heap: downheap Summary
‣ downheap restores order by 
‣ swapping key downward from the root… 
‣ …with the smaller of 2 children
‣ terminates when either a leaf is reached or

‣ …some node whose children have key k or more

‣ downheap has runtime
‣ O(log n), why?

‣ because heap has height O(log n)
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Summary of Heap
‣ insert(key, value)

‣ insert value at insertion node
‣ insertion node must be kept track of

‣ upheap from insertion node as necessary

‣ removeMin( )

‣ swap root with last item
‣ delete (swapped) last item

‣ downheap from root as necessary
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Finding Insertion Node
‣ Can be found in O(log n)
‣ Start at last added node
‣ Go up until a left child or root is reached
‣ If left child 

‣ go to sibling (corresponding right child)
‣ then go down left until leaf is reached
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Can be done in O(1) 
time by using 

additional data 
structure…need this 

for project!



Array-based Heap
‣ Heap with n keys can be represented  

w/ array of size n+1 

‣ Storing nodes in array

‣ Node stored at index i

‣ left child stored at index 2i

‣ right child stored at index 2i+1

‣ Leaves & edges not stored

‣ Cell 0 not used

‣ Operations

‣ insert: store new node at index n+1

‣ removeMin: swap w/ index n and remove
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