Priority Queues
& Heaps

CS16: Introduction to Data Structures & Algorithms
Summer 202 |

VWhy trees, revisited

» Trees: natural representation of hierarchical data

» Expression trees, directories, parse trees, etc.
» Also used for organizing data that aren’t inherently hierarchical

» Why!
O
.
o =

» Consider a perfect binary tree with N nodes
(CCCLCCCqC

» Height I1s log N

VWhy trees, revisited

» Iwo operations:

» Operation | looks at every node in the tree once, doing a
constant amount of work per node. Runtime!

» Operation 2 looks at every level of the tree once, doing a
constant amount of work per level. Runtime!

o4 b

((((C(((((((((Q

Motivation

» Priority queues store items with various priorities
» Priority queues are everywhere

» Plane departures: some flights have higher priority than
others

» Bandwidth management: real-time traffic like Skype
transmitted first

» Student dorm room allocations

4

Priority Queue AD T

» Stores key/element pairs
» key determines position In queue

» insert (key, element):
» Inserts element with key

» removeMin():

» removes pair w/ smallest key and
returns element

Using a priority queue

PO PriorityQueue

PQ.1insert (2, “Practice banjo”)
PQ.1insert (1, “Prepare lecture”)
PQ.insert (3, “Eat avocado”)
PQ.removeMin ()
PQ.removeMin/()

PQ contents:

Using a priority queue

PO PriorityQueue

PQ.1insert (2, “Practice banjo”)
PQ.1nsert(l, “Prepare lecture”)
PQ.insert (3, “Eat avocado”)
PQ.removeMin ()
PQ.removeMin/()

(2, “Practice banjo”)

PQ contents:

Using a priority queue

PQ = PriorityQueue
PQ.1nsert (2, “Practice banjo”)
PQ.1insert (1, “Prepare lecture”)
PQ.insert (3, “Eat avocado”)

PQ.removeMin ()
PQ.removeMin/()

(2, “Practice banjo”)

(1, “Prepare lecture”)

PQ contents:

Using a priority queue

PQ = PriorityQueue
PQ.1nsert (2, “Practice banjo”)
PQ.1insert (1, “Prepare lecture”)
PQ.insert (3, “Eat avocado”)

PQ.removeMin ()
PQ.removeMin/()

(2, “Practice banjo”)

(1, “Prepare lecture”)

PQ contents:

(1, “Eat avocado”)

Using a priority queue

PQ = PriorityQueue
PQ.1nsert (2, “Practice banjo”)
PQ.1insert (1, “Prepare lecture”)
PQ.insert (3, “Eat avocado”)

PQ.removeMin ()
PQ.removeMin/()

(2, “Practice banjo”)

PQ contents:

(1, “Eat avocado”)

Using a priority queue

PO PriorityQueue

PQ.1nsert (2, “Practice banjo”)
PQ.1insert (1, “Prepare lecture”)
PQ.insert (3, “Eat avocado”)
PQ.removeMin ()
PQ.removeMin/()

PQ contents:

(1, “Eat avocado”)

Naive PQ implementation

» Store elements In an expandable array

called data

» insert(key, element): el

» add (key, element) to end of data

» removeMin():

» scan through data, remove and return
element with smallest key

» Runtimes!?

—eaps.

» [ree-based PQ implementation

» Data structure, notan ADT

> Heaps are to PQs as Hash tables are to

dictionaries
[(1, Lecture)]
e
((2, Banjo)] ((3, Avocado)j

[(7, Dry cleaning))[G, Hair'cut))

¢ N

Heap Properties

» Binary tree

» each node has at most 2 children
» Each node has a priority (key)
» Heap has an order

» min-heap: n.parent.key < n.key

» Left-complete

» Height of O(log n)

Valid heaps!

Valid heaps!

—leap: insert

» Need to keep track of “insertion node”
» |leaf where we will insert new node...

» ...50 we can keep heap left-complete

" Insertion node

—leap: insert

» Ex:Insert(1)

» replace Insertion node w/ new node

Heap order
violated!

—eap: upheap

» Repalr heap: swap hew element up tree until keys are sorted

» First swap fixes everything below new location

» since every node below 6's old location has to be at least 6...

» ...they must be at least 1 e

—eap: upheap

» One more swap since 1=2

» Now left-completeness and order are satisfied

20

—leap: insert

» EX:Insert(3)

A

(3,
Ln

—leap: insert

» EX: Insert(3)

A

(3,
Ln

—leap: insert

» EX: Insert(3)

2,
o B A B

—leap: insert

» EX: Insert(3)

Heap: upheap Summary

» After inserting a key k, order may be violated

» upheap restores order by

» swapping key upward from insertion node

» terminates when either the root Is reached...

» ...0r some node whose parent has key less or equal than k
» Heap Insertion has runtime

» O(log n),why?

» because heap has height 0(log n)

» perfect binary tree with n nodes has height log(n+1)-1

i

Heap: removeMin

» Remove root

» because It I1s always the smallest element

» How can we remove root w/o destroying heap?

Heap
destroyed!

26

Heap: removeMin

» Instead swap root with last element & remove It

» removing last element Is easy

Order
destroyed!

L7

Heap: removeMin

» Now swap root down as necessary

Heap Is In
olge[sly

Heap: downheap Summary

» downheap restores order by
» swapping key downward from the root. ..

» ...with the smaller of 2 children

» terminates when erther a leaf i1s reached or

» ...some node whose children have key k or more
» downheap has runtime

» O(log n),why!

» because heap has height 0(log n)

LS

Summary of Heap

» insert(key, value)

» Insert value at insertion node

» Insertion node must be kept track of

» upheap from insertion node as necessary

» removeMin()
» swap root with last item

» delete (swapped) last item

» downheap from root as necessary

30

rinding Insertion Noae

» Can be foundin O(log n)

Can be done in O(l)

» Start at last added node time by using
additional data

» Go up until a left child or root Is reached RIS -FL TR TE
. for project!
» |T left child

» g0 1o sibling (corresponding right child)

» then go down left until leaf is reached O

— — —
— e
-—
-

31

Array-based Heap

» Heap with n keys can be represented

w/ array of size n+1

» Storing nodes In array

» Node stored at index 1

» left child stored at index 21

» right child stored at index 21+1

» Leaves & edges not stored 215|697

» Cell 0 not used 0 1 2 53 SN

» Operations

» Insert: store new node at index n+1

» removeMin: swap w/ index n and remove

