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Why trees, revisited
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‣ Trees: natural representation of hierarchical data

‣ Expression trees, directories, parse trees, etc.


‣ Also used for organizing data that aren’t inherently hierarchical

‣Why?

‣ Consider a perfect binary tree with N nodes

‣Height is log N
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Why trees, revisited
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‣ Two operations:

‣Operation 1 looks at every node in the tree once, doing a 

constant amount of work per node. Runtime?

‣Operation 2 looks at every level of the tree once, doing a 

constant amount of work per level. Runtime?
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Motivation
‣ Priority queues store items with various priorities


‣ Priority queues are everywhere


‣ Plane departures: some flights have higher priority than 
others


‣ Bandwidth management: real-time traffic like Skype 
transmitted first


‣ Student dorm room allocations


‣ …
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Priority Queue ADT

‣ Stores key/element pairs

‣ key determines position in queue


‣ insert(key, element): 

‣ inserts element with key


‣ removeMin( ):

‣ removes pair w/ smallest key and 

returns element
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Using a priority queue
PQ = PriorityQueue
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Naive PQ implementation

‣ Store elements in an expandable array 
called data

‣ insert(key, element): 


‣ add (key, element) to end of data

‣ removeMin( ):


‣ scan through data, remove and return 
element with smallest key


‣ Runtimes?

O(1)

O(n)



Heaps!
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‣ Tree-based PQ implementation

‣ Data structure, not an ADT

‣ Heaps are to PQs as Hash tables are to 

dictionaries
(1, Lecture)

(2, Banjo) (3, Avocado)

(7, Dry cleaning) (5, Haircut)



Heap Properties
‣ Binary tree

‣ each node has at most 2 children


‣ Each node has a priority (key)

‣ Heap has an order

‣ min-heap: n.parent.key ≤ n.key


‣ Left-complete

‣ Height of O(log n)
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Valid heaps?
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Heap: insert
‣ Need to keep track of “insertion node”

‣ leaf where we will insert new node…

‣ …so we can keep heap left-complete
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Heap: insert
‣ Ex: insert(1)

‣ replace insertion node w/ new node
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Heap order 
violated!



Heap: upheap
‣ Repair heap: swap new element up tree until keys are sorted

‣ First swap fixes everything below new location


‣ since every node below 6’s old location has to be at least 6…


‣ …they must be at least 1
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Heap: upheap
‣ One more swap since 1≤2
‣ Now left-completeness and order are satisfied
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Heap: insert
‣ Ex: insert(3)
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Heap: insert
‣ Ex: insert(8)
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Heap: insert
‣ Ex: insert(8)
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Heap: insert
‣ Ex: insert(8)
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Heap: upheap Summary
‣ After inserting a key k, order may be violated

‣ upheap restores order by 

‣ swapping key upward from insertion node

‣ terminates when either the root is reached…


‣ …or some node whose parent has key less or equal than k

‣ Heap insertion has runtime

‣ O(log n), why?


‣ because heap has height O(log n)


‣ perfect binary tree with n nodes has height log(n+1)-1
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Heap: removeMin
‣ Remove root 

‣ because it is always the smallest element


‣ How can we remove root w/o destroying heap?

26

1

25

79 6

25

79 6

Heap 
destroyed!



Heap: removeMin
‣ Instead swap root with last element & remove it

‣ removing last element is easy
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Heap: removeMin
‣ Now swap root down as necessary
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Heap is in 
order!
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Heap: downheap Summary
‣ downheap restores order by 

‣ swapping key downward from the root… 

‣ …with the smaller of 2 children

‣ terminates when either a leaf is reached or


‣ …some node whose children have key k or more


‣ downheap has runtime

‣ O(log n), why?


‣ because heap has height O(log n)
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Summary of Heap
‣ insert(key, value)


‣ insert value at insertion node

‣ insertion node must be kept track of


‣ upheap from insertion node as necessary


‣ removeMin( )


‣ swap root with last item

‣ delete (swapped) last item


‣ downheap from root as necessary
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Finding Insertion Node
‣ Can be found in O(log n)
‣ Start at last added node

‣ Go up until a left child or root is reached

‣ If left child 


‣ go to sibling (corresponding right child)

‣ then go down left until leaf is reached
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Can be done in O(1) 
time by using 

additional data 
structure…need this 

for project!



Array-based Heap
‣ Heap with n keys can be represented  

w/ array of size n+1 


‣ Storing nodes in array


‣ Node stored at index i

‣ left child stored at index 2i

‣ right child stored at index 2i+1

‣ Leaves & edges not stored


‣ Cell 0 not used


‣ Operations


‣ insert: store new node at index n+1

‣ removeMin: swap w/ index n and remove
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