Tree Properties & Traversals

CS16: Introduction to Data Structures & Algorithms
Seny Kamara - Spring 2017
Outline

- Tree & Binary Tree ADT
- Tree Traversals
 - Breadth-First Traversal
 - Depth-First Traversal
- Recursive DFT
 - pre-order, post-order, in-order
- Euler Tour Traversal
- Traversal Problems
- Analysis on perfect binary trees
What is a Tree?

- Abstraction of hierarchy
- Tree consists of
 - nodes with parent/child relationship
- Examples
 - Files/folders (Windows, MacOSX, …., CS33)
 - Merkle Trees (Bitcoin, CS166)
 - Encrypted Dictionaries, Oblivious RAMs (CS2950-v)
 - Datacenter Networks (Azure, AWS, Google, CS168)
 - Distributed Systems (Distributed Storage, Cluster computing, CS138)
 - AI & Machine Learning (Decision trees, Neural Networks, CS141, CS142)
Tree “Anatomy”

- **Root**: Node A
- **Internal Nodes**: Nodes B, C, D, E, F, G, H
- **Subtree**: Nodes I, J, K
- **Leaves/External Nodes**: Nodes I, J, K
- **Height**: Vertical distance from the root to the leaves
Tree Terminology

- **Root**: node without a parent (A)
- **Internal node**: node with at least one child (A, B, C, F)
- **External node (leaf)**: node without children (E, I, J, K, G, H, D)
- **Parent node**: node immediately above a given node (parent of C is A)
- **Child node**: node(s) immediately below a given node (children of C are G and H)
- **Ancestors of a node**:
 - parent, grandparent, grand-grandparent, etc. (ancestors of G are C, A)
- **Depth of a node**: number of ancestors (I has depth 3)
- **Height of a tree**:
 - maximum depth of any node (tree with just a root has height 0, this tree has height 3)
- **Descendant of a node**: child, grandchild, grand-grandchild, etc.
- **Subtree**: tree consisting of a node and its descendants
Tree ADT

- Tree methods:
 - int size(): returns the number of nodes
 - boolean isEmpty(): returns true if the tree is empty
 - Node root(): returns the root of the tree

- Node methods:
 - Node parent(): returns the parent of the node
 - Node[] children(): returns the children of the node
 - boolean isInternal(): returns true if the node has children
 - boolean isExternal(): returns true if the node is a leaf
 - boolean isRoot(): returns true if the node is the root
Binary Trees

- Internal nodes have at most 2 children
 - left and right
 - if only 1 child, still need to specify if left or right
- Recursive definition
 - Tree with a single node or
 - Tree whose root has at most 2 children
 - each of which is a binary tree
Binary Tree ADT

- In addition to Tree methods binary trees have:
 - Node left(): returns the left child if it exists, else NULL
 - Node right(): returns the right child if it exists, else NULL
 - Node hasLeft(): returns TRUE if node has left child
 - Node hasRight(): returns TRUE if node has right child
Perfection

- A binary tree is a **perfect** if
 - every level is completely full
Completeness

- A binary tree is **left-complete** if
 - every level is completely full, possibly excluding the lowest level
 - all nodes are as far left as possible

![Diagram](image-url)
Aside: Decorations

- Decorating a node
 - associating a value to it

- Two approaches
 - Add new attribute to each node
 - ex: `node.numDescendants = 5`
 - Maintain dictionary that maps nodes to decoration
 - do this if you can’t modify tree
 - ex: `descendantDict[node] = 5`
Outline

- Tree ADT
- Binary Tree ADT
- **Tree Traversals**
 - Breadth-First Traversal
 - Depth-First Traversal
- Recursive DFT
 - pre-order, post-order, in-order
- Euler Tour Traversal
- Traversal Problems
- Analysis on perfect binary trees
Tree Traversals

- Not obvious how to visit every node of a tree
 - unlike arrays which have a natural order
- Tree traversal
 - algorithm for visiting every node in a tree
- Many possible tree traversals
 - each visit nodes in different orders
Breadth- vs. Depth-First Traversals
Traversal Strategy

- Array traversal can be done with a `for` loop
 - Why?
- What about a tree traversal?
 - Why not?
- For tree traversal we’ll use a `while` loop
Traversal Strategy

```plaintext
function traversal(root):
  ...
  while ...
    ...
    do something with a node
  ...

function traversal(root):
  ...
  while ...
    ...
    do something with node
  store children in S

function traversal(root):
  ...
  while S is not empty
    ...
    do something with node
  store children in S
```
Traversing Strategy

function traversal(root):
 ...
 while S is not empty
 ...
 do something with node
 store children in S

A
 B C
 D E
 H J

function traversal(root):
 Store root in S
 while S is not empty
 get node from S
 do something with node
 store children in S
Traversing Strategy

- What is S exactly?
 - Where we store nodes until we can process them
- Which node of S should we process next?
 - the first? the last?

```
function traversal(root):
    Store root in S
    while S is not empty
        get node from S
        do something with node
        store children in S
```
Traversals Strategy — Get First

function **traversal**(root):
 Store root in S
 while S is not empty
 get node from S
 do something with node
 store children in S
Traversal Strategy — Get First

function traversal(root):
 Store root in S
 while S is not empty
 get node from S
 do something with node
 store children in S

Does S remind you of something?
Traversals Strategy — Get First

- If we get first node in S
 - we're doing FIFO…
 - so S is a queue!
 - Traversal with Queue gives breadth-first traversal
- Why?
 - Queue guarantees node is processed before its children
- Children can be inserted in any order

```plaintext
function bft(root):
    Q = new Queue()
    enqueue root
    while Q is not empty
        node = Q.dequeue()
        visit(node)
        enqueue node’s left & right children
```
Breadth-First Traversal

- Start at root
 - Visit both of its children first,
 - Then all of its grandchildren,
 - Then great-grandchildren
 - etc…
 - Also known as
 - level-order traversal
Depth-First Traversal

- What if we process youngest/last element in S?
 - we’re doing LIFO…
 - so S is a stack!
 - Traversal w/ Stack gives us…
- Depth-first search
 - start from root
 - traverse each branch before backtracking
 - can produce different orders
Depth-First Traversal

function \texttt{dft}(root):
 \texttt{S} = \texttt{new Stack()}
 \texttt{push root}
 \texttt{while S is not empty}
 \texttt{node} = \texttt{S.pop()}
 \texttt{visit(node)}
 \texttt{push node’s left & right children}

- Why does Stack give DFT?
 - Stack guarantees entire branch will be visited before visiting another branch
 - Children can be pushed on stack in any order
Outline

- Tree ADT
- Binary Tree ADT
- Tree Traversals
 - Breadth-First Traversal
 - Depth-First Traversal
- Recursive DFT
 - pre-order, post-order, in-order
- Euler Tour Traversal
- Traversal Problems
- Analysis on perfect binary trees
Recursive Depth-First Traversal

- DFT can be implemented recursively
- With recursion we can have 3 different orders
 - **pre-order**: visits each node before visiting left and right
 - **post-order**: visits each child before visiting node
 - **in-order**: visits left child, node and then right child
Depth-First Visualizations
Pre-order Traversal

function *preorder*(node):
 visit(node)
 if node has left child
 preorder(node.left)
 if node has right child
 preorder(node.right)

Note: like iterative DFT
Post-order Traversal

function postorder(node):
 if node has left child
 postorder(node.left)
 if node has right child
 postorder(node.right)
 visit(node)
function `inorder(node)`:
 if node has left child
 inorder(node.left)
 visit(node)
 if node has right child
 inorder(node.right)
Outline

- Tree ADT
- Binary Tree ADT
- Tree Traversals
 - Breadth-First Traversal
 - Depth-First Traversal
- Recursive DFT
 - pre-order, post-order, in-order
- **Traversal Problems**
- Analysis on perfect binary trees
When to Use What Traversal?

- How do you know which traversal to use?
- Sometimes it doesn’t matter
- Often one traversal makes solving problem easier
Which traversal should be used to decorate nodes with # of descendants?

Activity #1

1 min
Tree Traversals Problems

Activity #1

Which traversal should be used to decorate nodes with # of descendants?

1 min
Which traversal should be used to decorate nodes with # of descendants?
Tree Traversals Problems

- Decorating with number of descendants?
- **Post-order**
 - visits both children before node
 - easy to calculate # of descendants if you know # of descendants of both children
 - try writing pseudo-code for this
Given root, which traversal should be used to test if tree is perfect?
Tree Traversals Problems

Activity #1

Given root, which traversal should be used to test if tree is perfect?
Given root, which traversal should be used to test if tree is perfect?
Tree Traversals Problems

- Decorating with number of descendants?
- **Breadth-first**
 - traverses tree level by level
 - keep track of how many nodes at level
 - each level should have twice as many as previous level
- There are other ways to solve this. Can you think of any?
Tree Traversals Problems

- Evaluate arithmetic expression tree

\[(7 - (4 + 3)) + (9 / 3) =\]

- Best traversal?
 - **post-order**: to evaluate operation, you first need to evaluate sub-expression on each side
 - What should you do when you get to a leaf?
Tree Traversals Problems

- Given tree, print out expression w/o parentheses

```
7 + 9 + 3 = 7 - 4 + 3 + 9 / 3
```

- Best traversal?
 - **in-order**: gives nodes from left to right
Euler Tour Traversal

- Generic traversal of binary tree
 - pre-order, post-order and in-order are special cases
- Each node visited 3 times
 - left, bottom, right
Euler Tour Traversal

- **Visit on**
 - **left:** pre-order traversal
 - **bottom:** in-order traversal
 - **right:** post-order traversal
function `eulerTour(node):`

pre-order
visitLeft(node)

if node has left child:
eulerTour(node.left)

in-order
visitBelow(node)

if node has right child:
eulerTour(node.right)

post-order
visitRight(node)
Tree Traversals Problems

- Best traversal?
- Euler tour

Given tree, print out expression w/ parentheses

\[(7 - (4 + 3)) + (9 / 3)\]
Tree Traversals Problems

- Best traversal?
 - **Euler tour**
- Internal nodes
 - For pre-order visit, print “(“
 - For in-order visit, print operator
 - For post-order visit, print “)"
- Leaves
 - Don’t do anything for pre-order and post-order visits
 - For in-order visit, print number
Outline

- Tree ADT
- Binary Tree ADT
- Tree Traversals
 - Breadth-First Traversal
 - Depth-First Traversal
- Recursive DFT
 - pre-order, post-order, in-order
- Traversal Problems
- Analysis on perfect binary trees
Analyzing Binary Trees

- Many things can be modeled as binary trees
 - ex: Fibonacci recursive tree
- Knowing certain facts about binary trees helps with analysis
 - ex: how many recursive calls are made by a binary recursive tree of height n?
- Perfect binary trees are easier to analyze…
- …so we use them to estimate analysis of general trees
Analyzing **Perfect** Binary Trees

- Number of nodes PBT of height h:
 - $2^{h+1} - 1$

- Height of a PBT with n nodes:
 - $\log_2(n+1)$

- Number of leaves in PBT of height h:
 - 2^h

- Number of nodes in PBT with L leaves:
 - $2L - 1$
Induction on Perfect Binary Trees

- Can use induction to prove things about PBTs
- Alternative definition of perfect binary trees
- Tree T is a perfect binary tree if
 - it has only one node
 - or has root with left and right subtrees which are both perfect binary trees of same height
 - (if subtrees have height h, then T has height $h+1$)
Example Inductive Proof on PBTs

- Prove $P(n)$:
 - number of nodes in a PBT of height n is $2^{n+1} - 1$

- Base case $P(0)$:
 - $2^{0+1} - 1 = 2 - 1 = 1$
 - Number of nodes in PBT of height 0 is 1, because tree only has a root by definition

- Inductive hypothesis:
 - assume $P(k)$ is true (for some $k \geq 0$)
 - in the words: the number of nodes in PBT of height k is $2^{k+1} - 1$
Example Inductive Proof on PBTs

Then prove that \(P(k+1) \) is true:

- Let \(T \) be any PBT of height \(k+1 \)
- By definition, \(T \) consists of root with two subtrees, \(L \) and \(R \), which are both PBTs of height \(k \)
- By inductive hypothesis, \(L \) and \(R \) both have \(2^{k+1} - 1 \) nodes
- Number of nodes in \(T \) is therefore:
 \[1 + 2 \times (2^{k+1} - 1) = 1 + 2^{k+2} - 2 = 2^{(k+1)+1} - 1 \]
- Since we’ve proved
 - \(P(0) \) is true
 - \(P(k) \) implies \(P(k+1) \) for any \(k \geq 0 \)
 - It follows by induction that \(P(n) \) is true for all \(n \geq 0 \)