Iree Properties &
lraversals

CST6: Introduction to Data Structures & Algorithms
Spring 2020

o0 fi seny Info

s Seny
v Modified: Today, 16:46

General:

Kind: Folder
Size:
Where: Macintosh HD » Users
Created: Sunday, July 22, 2018 at 13:58
Modified: January 20, 2019 at 16:46

Shared folder
Locked

More Info:

Last opened: January 20, 2019 at 17:05

Name & Extension:

Comments:

Preview:

» How does OS calculate size of
directories!?

Outline

lliecrceBinary lree AD [

» [ree raversals

» Breadth-First Traversal

» Depth-First Traversal
» Recursive DFT

» pre-order, post-order; in-order

» Euler Tour Traversal
» [raversal Problems

» Analysis on perfect binary trees

Q)
0

.r\' \
y bs
‘ | It int
Carpus
humt
G Radius ~~
T
Phalanges \
I\
ght © 1997 Art and design: Eugene Are

Knee joint

Dragon anatomy: Skeleton

dal spad
\)
\
Caudal vertebrae X
) \
| spine \ /
'~ Wing phalanges
T
. Ischium \(hev
{ ’ //Tihizl & fibula
semur Y\\/Tarsus
y R Met
Aeta
7 Ankle joint \\/
\\ W
— Hallux o /4
W All rights reserved @

What Is a [ree!

» Abstraction of hierarchy

» [ree consists of

» nodes with parent/child relationship

» Examples

» Files/folders (Windows, MacOSX, ..., €S33)

» Merkle Trees (Brtcoin, CS 166)

» Encrypted Data Structures (€S2950=v)

» Datacenter Networks (Azure, AWS, Google, CS168)

» Distributed Systems (Distributed Storage, Cluster computing, €S 138)
Al & Machine Learning (Decision trees, CS141, CS142)

A 4

Iree "Anatomy”

i n t e I n al FIGURE 16. Ventral muscles

v
subtree

oo oo —mo o oo =

Does this remind you of something?

Iree lerminology

» Root: node without a parent (A)

» Internal node: node with at least one child (A, B, C, F)

» Leaf (external node): node without children (E |}, K G, H, D)

» Parent node: node immediately above a given node (parent of C is A)

» Child node: node(s) immediately below a given node (children of C are G and H)

» Ancestors of a node:

» parent, grandparent, grand-grandparent, etc. (ancestors of G are C,A)
» Descendant of a node: child, grandchild, grand-grandchild, etc.
» Depth of a node: number of ancestors (I has depth 3)

» Height of a tree:
» maximum depth of any node (tree with just a root has height O, this tree has height 3)

» Subtree: tree consisting of a node and its descendants

Tree ADT

» [ree methods:

» Nt size(): returns the number of nodes

» boolean isEmpty(): returns true If the tree Is empty

» Node root(): returns the root of the tree

» Node methods:

» Node parent(). returns the parent of the node

» Node[| echildren(): returns the children of the node

—~

» boolean isInternal() returns true If the node has children

—~

» boolean isExternal(). returns true If

the node Is a leaf

» boolean 1sRoot(): returns true If the node Is the root

7

Binary lrees

» Internal nodes have at most 2 children: left & right

» 1 only 1 child, still need to specify If left or right

» Recursive definrtion of a Binary Tree

» a single node
» oraroot node with at most 2 children
» each of which Is a binary tree

> s a binary tree!

a binary tree!

h

&la D

— \' ca¥a\®)
,. N - ..) r 3 |
D g
| | % o A (AL A

X \ = = - e _

» .‘ "\ \ "’ o \
s N § BV ,
l:‘l / | ‘\(\\11
W™ N

% ‘ i
i .
= .

J
» In addition to Tree methods binary trees also support: ZULS
» Node left(). returns the left child if it exists, else NULL

>

Node right(): returns the right child if it exists, else NULL
» Node hasLeft(): returns TRUE If node has left chilc
Node hasRight(): returns TRUE If node has right c

Perfection

» A binary tree Is perfect It

» every level Is completely full

Not perfect Perfect!

Completeness

» A binary tree is left-complete if
» every level Is completely full, possibly excluding the lowest level
» all nodes are as far left as possible

Left- Not left-
complete! complete

Aside: Decorations

» Decorating a node

» assoclating a value to 1t

» [wo approaches

» Add new attribute to each node
» ex: node.numDescendants = 5

» Maintain dictionary that maps nodes to decoration
» do this If you can't modify tree
» ex:.descendantDict[node] = 5

12

Outline

e D
» Binary Tree ADT

» Tree Traversals

» Breadth-First Traversal

» Depth-First Traversal
e etiisive DET

» pre-order, post-order, in-order

» tuler Tour Traversal
» Traversal Problems

» Analysis on perfect binary trees

Q)
0

Dragon anatomy: Skeleton

Wing carpus & metacarpus

Wing thumb —— S o
Horn core
Braincase \)
Orbit \ dal spad
\ o 3 \\
Naris < \Wi g rad 5
& 1al vertebrae /\
S Mandible Y, » [
Cervical ihs/ Sy st
T —uu.) Scapula Ilium N I sp \
o - ,{' - / ‘ __—Wing phalanges
Lla\’l(le\ % ot o ’
Did — e 7 $ N\ - ;
t m——") ! N
Metacarpus >
P[5 Ischium \(h
= / 3
\ J Ribs Tibia & fibul
Ulna g joint / //
Carpus L
Knee joint L T
Thumb : \) Ve
Radius ~7 \\._ Metat
Toe phalang 7 Ankle joint 4
Phalanges 1
| \
N z —Hall &
1997 A E A - W Al rights reserved @

Tree lraversals

» How would you enumerate every item in an array!

» use a forloop from 1 ton andread A[1]
» How would you enumerate every item in a (linked) Tree!
» not obvious...
» because Irees don't have an “obvious’ order like arrays
» [ree traversal
» algorithm that visits every node of a tree

» Many possible tree traversals

» each kind of traversal visits nodes In different order

2

Breadth- vs. Depth-rirst [raversals

Iraversal Strategy

» Why can we use a for loop to enumerate items Iin an array?
» Can we use a for loop to visit nodes In a linked Tree!

» Why not?

» we usually don't know how many nodes the tree has

» not clear what we should do at every rteration

» For tree traversals we'll use a while loop

Iraversal Strategy

function traversal(root):
Store root in S
while S 1s not empty
get node from S

do something with node

store children in S

Iraversal Strategy

function traversal (root):
Store root in S
while S 1s not empty
get node from S

do something with node

store children in S

» What is S exactly?
» A place we store nodes until we can process them

» Which node of S should we process next!

» the first! the last!

Traversal Strategy — Grab Olc

function traversal (root):

Store root 1in S

while S 1s not empty
get node from S
do something with node
store children in S

est Noc

Traversal Strategy — Grab Oldest Node

function traversal (root):

Store root 1in S

while S 1s not empty
get node from S
do something with node
store children in S

Traversal Strategy — Grab Oldest Node

function bft(root):
QO = new Queue()

» |f we grab the oldest node In S enqueue root

while Q is not empty

R eliedolng FIFO. .. node = Q.dequeue()
visit(node)

3 sc>Sisju§ta<queue! enqueue node’s children

» Traversal w/ Queue gives breadth-first traversal

» Why!

» Queue guarantees a node Is processed before 1ts children

» Children can be inserted in any order

|

Breadth-First [raversal

» Start at root

» Visit both of its children first,

» Then all of its grandchildren,

» [hen great-grandchildren

pCliE s

» Also known as
ABCDEFGHI

» |level-order traversal

L)

Depth-rirst [raversa

» What If we grab youngest node in S/
i deing LLFO) . .
» SO S Is a stack
» Traversal w/ Stack gives us. ..
» Depth-first search
» start from root

» traverse each branch before

backtracking ACHGBF K] IE
pcan produce differentorders A B E E |]I KEGCEGERE

L

Depth-rirst [raversa

function dft(root):
S = new Stack()
push root

while S 1s not empty
node = S.pop()
visit(node)

push node’s children

» Why does Stack give DFT?

» Stack guarantees a node’s descendants will be visited before
its sibling's descendants

» Children can be pushed on stack in any order

ik

Outline

e D
» Binary Tree ADT

» [ree raversals

» Breadth-First Traversal

» Depth-First Traversal
» Recursive DFT
» pre-order, post-order, in-order

Euler Tour Traversal

v

Traversal Problems

v

Analysis on perfect binary trees

» A

Wing carpus & metacarpus

Wing thumb —— < -
Horn core
Braincase \
Orbit \
\ L b A
Naris 3 \ Wins ;
\
S Mandible b
¥
C | ribs / ! = ; Wing h me-r
Ny /) Scapula Ilium
Clavicle = * . /
— 4 . ot
i — R v B A
)

Q)
0

\ y
dal spade
N
\
fal verteb ('<
Neural spine \
‘ '~ Wing phalanges
T
Ischium \
Chev
/ //Tilvizl & fibul
semur \‘,\\/Tarn
y R Metat
57— Ankle joint \\/
\\ W
— Hall &
W All rights reserved @

Dragon anatomy: Skeleton

Recursive Deptnh-First [raversal

» DFT can be implemented recursively
» With recursion we can have 3 different orders

» pre=-order: visits node before visiting left and right
children

» post-order: visits each child before visiting node

» In=order: visits left child, node and then right child

26

Depth-rirst Visualizations

o «

~

: Starting Pre
. Order Traversal... ,

Starting) e
Inorder Traversal Starting Post
., Order Traversal... ./

LT

Pre-order |raversal

function preorder(node):
visit (node)
1f node has left child
preorder (node.left)

1f node has right child

preorder (node.right)

ABDEHRI C kG

Note: like iterative DFT

28

Post-order lraversal

function postorder (node):
if node has left child
postorder (node.left)

if node has right child
postorder (node.right)

visit (node)

DHI EBF GCA

L

In-order lraversal

function inorder (node):
1f node has left child
inorder (node.left)
visit (node)

if node has right child
inorder (node.right)

DBHEI A F GG

30

Outline

» Tree ADT
» Binary Tree ADT

» [ree lraversals

» Breadth-First Traversal

Q)
0

/ing thumb —— -
Horn core
Braincase \
drbit \
\ v
\Wi g rad
S Mandible ’
I ribs / - : Wing h
T / Scapula |
lavicle > - /
TR oy
- s | N\
m——")| !
>
4 \ PI
' 4 1 u
\ / / A Ribs r
‘ \ Ulna glbow joint /
arpus ;
Knee joint
humb =
phalanges
Phalz F/\\k
\
ght © 1997 Art and design: Eugene Are

Dragon anatomy: Skeleton

lal spad
)
\
Caudal vertebrae X
) \
| spine \
‘ '~ Wing phalanges
T
, Ischium \(hev
{ ’ //Tilvi‘l & fibula
semur \;\w/Tarsus
4 R Met
7 Ankle joint \\/ s
\\ W
— Hallux /4
W All r @

» Depth-First Traversal
» Recursive DFT

» pre-order, post-order; iIn-order

» Traversal Problems

» Analysis on perfect binary trees

When to Use What [raversal!

» How do you know which traversal to use!

» Sometimes It doesn't matter

» Often one traversal makes solving problem easier

32

Iree lraversal Problem

Which traversal should be used to decorate nodes with # of descendants?

Activity #I

e

Iree lraversal Problem

Which traversal should be used to decorate nodes with # of descendants?

Activity #I

e

Iree lraversal Problem

Which traversal should be used to decorate nodes with # of descendants?

Activity #I

b

Iree lraversal Problem

» Decorating with number of descendants?

» Post-order
» Visits both children before node

» easy to calculate # of descendants If you know # of
descendants of both children

» try writing pseudo-code for this

36

Iree lraversal Problem

Given root, which traversal should be used to test if tree Is perfect?

. Act|V|ty H2

Iree lraversal Problem

Given root, which traversal should be used to test if tree Is perfect?

. Act|V|ty H2

Iree lraversal Problem

Given root, which traversal should be used to test if tree Is perfect?

3 Act|V|ty H2

Iree lraversal Problem

» lesting If tree Is perfect
» Breadth-first

» traverses tree level by level
» keep track of how many nodes at level

» each level should have twice as many as previous
level

40

Iree lraversal Problem

000 fi seny Info

s Seny

[Modified: Today, 16:46 /\

General:

Kind: Folder
Size:

Where: Macintosh HD » Users
Created: Sunday, July 22, 2018 at 13:58 \
Modified: January 20, 2019 at 16:46

Shared folder
Locked

More Info:
Last opened: January 20, 2019 at 17:05

Name & Extension:

Comments:

e » Best traversal?

» post-order: need to know size of subfolders
before you can compute size of a folder

5]

Iree lraversals Problems

» Evaluate arithmetic expression tree

(7—-@4+3)+(/3)

» Best traversal?

» post-order: to evaluate operation, you first need to
evaluate sub-expression on each side

» What should you do when you get to a leaf?

20

Iree lraversals Problems

» Given tree, print out expression w/o

parentheses

— T—44+3+9/3

» Best traversal!

» in=order: gives nodes from left to right

45

tuler lour lraversal

» (Generic traversal of binary tree

A s

» pre-order, post-order and In-order
are special cases

» Each node visited 3 times

» left, bottom, right

44

tuler lour lraversal

TS

Visit node on the

4

» left — pre-order traversal

bottom — in-order traversal

<

» right — post-order traversal

45

tuler lour lraversal

function eulerTour (node
pre-order
visitLeft (node

1f node has left child:
eulerTour (node.left)

in-order
visitBelow(node)

i1f node has right child:
eulerTour (node.right)

post-order

visitRight (node)

46

Iree lraversal Problems

» Given tree, print out expression w/

parentheses

— (7-@4+3)+O/3)

» Best traversal!

» Euler tour

47

» Best traversal?

» Euler tour

» Internal nodes

» For pre-order/left visit, print “("
» For in-order/bottom visit, print operator
» For post-order/right visit, print *)”
» Leaves
» Don't do anything for pre-order/left and post-order/right visits

» For In-order/bottom visit, print number

48

Outline

» Tree ADT
» Binary Tree ADT

» [ree lraversals

» Breadth-First Traversal

» Depth-First Traversal
» Recursive DFT
» pre-order, post-order; iIn-order

» [raversal Problems

Q)
0

humb
Phala
ght © 1997 Art and design: Eugene

Knee joint

Dragon anatomy: Skeleton

Caudal spad
,)
\
Caudal vertebrae <
| spine \
'~ Wing phalanges
T
Ischium \ \
\ Chev
{ ’ //Til!i‘l & fibula
semur \;\w/Tarsus
4 ' “
Meta
¥ Ankle joint \\/
\\ W
— Hallux /4
W All r @

» Analysis on perfect binary trees

Analyzing Binary lrees

» Many things can be modeled as binary trees

» ex: Fibonaccl recursive tree

F(5)
F(4)

F(n)=F(n—-1)+ F(n—2) o })\

F(3) F(2) E(Z k(1]

)\

F(2) F(1) F(1) FO) F(1) F()

F(1) F(O

)

50

Analyzing Binary lrees

» Knowing facts about binary trees can help with runtime analysis

» ex: how many recursive calls are made by a binary recursive
tree of height n?

» Perfect binary trees are easier to analyze...

» ...s0 often we use them to estimate analysis of general trees

S|

Analyzing Perfect Binary [rees

» Number of nodes Iin perfect binary tree of height h:

|

» Height of a perfect binary tree with n nodes:
» 1logz(n+1)-1

» Number of leaves In perfect binary tree of height h:
» 2h

» Number of nodes In perfect binary tree with L leaves:

» 2L-1

51

Induction on Perfect Binary [rees

» Can use Induction to prove things about PBTs
» Using recursive definition of perfect binary trees

» Iree | Is a perfect binary tree If
» 1t has only one node

» has root with left and right subtrees which are both
perfect binary trees of same height

» (If subtrees have height h, then T has height h+1)

5

xample Inductive Proot on PBIs

» Prove P(n):
» number of nodes In a perfect binary tree of height n is £ (n)=2n+1-1
» Basecase P(0):
» number of nodes In perfect binary tree of height 0 I1s 1 (by definition)
» £(0) = 20¢1-1 = 2-1 = 1
» Inductive hypothesis:
» assume P (k) is true (for some k=0)

» In words: the number of nodes In perfect binary tree of height k Is
f (k) =2 k11

bk

xample Inductive Proot on PBIs

» [Then prove that P (k+1) Is true;
» Let T be any perfect binary tree of height k+1

» By definition, T consists of root with two subtrees, L and R, which are both
berfect binary trees of height k

» By inductive hypothesis, L and R both have 2k+1—1 nodes

So total number of nodes In T Is:

v

» 2% (2k+1—1)+1= 2kr2—2+41 = 2(kt1)+1_]
» Since we've proved

» P(0) Istrue

» P(k) implies P(k+1) (forany k=0)

» [t follows by induction that P (n) is true for all n=0

515

Tree ADT vs. Data Structure

» Is a Tree an AD T or a data structure!
» [t's both
» The answer depends on the context

» Trees are useful and interesting abstract objects
» that capture parent/child relationships
» they can be implemented using different data structures
» some trees can be iImplemented using arrays
» they can also be implemented using dictionaries
» But when computer scientists talk about Trees they often mean
» the “linked tree’ data structure
» trees that are iImplemented using nodes and pointers

56

