
Tree Properties &
Traversals

CS16: Introduction to Data Structures & Algorithms
Spring 2020

‣ How does OS calculate size of
directories?

Outline
‣ Tree & Binary Tree ADT

‣ Tree Traversals
‣ Breadth-First Traversal
‣ Depth-First Traversal

‣ Recursive DFT
‣ pre-order, post-order, in-order

‣ Euler Tour Traversal

‣ Traversal Problems

‣ Analysis on perfect binary trees

What is a Tree?
‣ Abstraction of hierarchy
‣ Tree consists of

‣ nodes with parent/child relationship

‣ Examples
‣ Files/folders (Windows, MacOSX, …, CS33)
‣ Merkle Trees (Bitcoin, CS166)
‣ Encrypted Data Structures (CS2950-v)
‣ Datacenter Networks (Azure, AWS, Google, CS168)
‣ Distributed Systems (Distributed Storage, Cluster computing, CS138)
‣ AI & Machine Learning (Decision trees, CS141, CS142)

4

subtree

Tree “Anatomy”

5

A

B DC

G HE F

I J K

root

internal

leaves/
external

nodes

height

Does this remind you of something?

Tree Terminology
‣ Root: node without a parent (A)
‣ Internal node: node with at least one child (A, B, C, F)
‣ Leaf (external node): node without children (E, I, J, K, G, H, D)
‣ Parent node: node immediately above a given node (parent of C is A)
‣ Child node: node(s) immediately below a given node (children of C are G and H)
‣ Ancestors of a node:

‣ parent, grandparent, grand-grandparent, etc. (ancestors of G are C, A)

‣ Descendant of a node: child, grandchild, grand-grandchild, etc.
‣ Depth of a node: number of ancestors (I has depth 3)
‣ Height of a tree:

‣ maximum depth of any node (tree with just a root has height 0, this tree has height 3)

‣ Subtree: tree consisting of a node and its descendants

6

Tree ADT
‣ Tree methods:
‣ int size(): returns the number of nodes
‣ boolean isEmpty(): returns true if the tree is empty
‣Node root(): returns the root of the tree

‣Node methods:
‣Node parent(): returns the parent of the node
‣Node[] children(): returns the children of the node
‣ boolean isInternal(): returns true if the node has children
‣ boolean isExternal(): returns true if the node is a leaf
‣ boolean isRoot(): returns true if the node is the root

7

Binary Trees
‣ Internal nodes have at most 2 children: left & right

‣ if only 1 child, still need to specify if left or right

‣ Recursive definition of a Binary Tree

‣ a single node

‣ or a root node with at most 2 children

‣ each of which is a binary tree

‣ Is a binary tree?

‣ Is a binary tree?

A

B C

F GD E

H J
F

E

JH

Binary Tree ADT
‣ In addition to Tree methods binary trees also support:
‣Node left(): returns the left child if it exists, else NULL
‣Node right(): returns the right child if it exists, else NULL
‣Node hasLeft(): returns TRUE if node has left child
‣Node hasRight(): returns TRUE if node has right child

9

Perfection
‣ A binary tree is perfect if
‣ every level is completely full

10

Not perfect Perfect!

Completeness
‣A binary tree is left-complete if
‣ every level is completely full, possibly excluding the lowest level
‣ all nodes are as far left as possible

11

Left-
complete!

Not left-
complete

Aside: Decorations
‣ Decorating a node
‣ associating a value to it

‣ Two approaches
‣ Add new attribute to each node
‣ ex: node.numDescendants = 5

‣ Maintain dictionary that maps nodes to decoration
‣ do this if you can’t modify tree

‣ ex: descendantDict[node] = 5

12

Outline
‣ Tree ADT

‣ Binary Tree ADT

‣ Tree Traversals
‣ Breadth-First Traversal
‣ Depth-First Traversal

‣ Recursive DFT
‣ pre-order, post-order, in-order

‣ Euler Tour Traversal

‣ Traversal Problems

‣ Analysis on perfect binary trees

Tree Traversals
‣ How would you enumerate every item in an array?

‣ use a for loop from i to n and read A[i]

‣ How would you enumerate every item in a (linked) Tree?

‣ not obvious…
‣ because Trees don’t have an “obvious” order like arrays

‣ Tree traversal
‣ algorithm that visits every node of a tree

‣ Many possible tree traversals
‣ each kind of traversal visits nodes in different order

14

Breadth- vs. Depth-First Traversals

15

A

B C

F GD E

H I

A

B C

F GD E

H I

Traversal Strategy
‣ Why can we use a for loop to enumerate items in an array?

‣ Can we use a for loop to visit nodes in a linked Tree?

‣ Why not?

‣ we usually don’t know how many nodes the tree has

‣ not clear what we should do at every iteration

‣ For tree traversals we’ll use a while loop

16

Traversal Strategy

17

function traversal(root):
 Store root in S
 while S is not empty

get node from S
do something with node
store children in S

A

B C

F GD E

H J

Traversal Strategy

‣ What is S exactly?
‣ A place we store nodes until we can process them

‣ Which node of S should we process next?
‣ the first? the last?

18

function traversal(root):
 Store root in S
 while S is not empty

get node from S
do something with node
store children in S

A

B C

F GD E

H J

Traversal Strategy — Grab Oldest Node

19

A

B C

F GD E

H I

function traversal(root):
 Store root in S
 while S is not empty

get node from S
do something with node
store children in S

S

A

B C

D E
F

G

H

I

A C D E F G H IB

Traversal Strategy — Grab Oldest Node

20

function traversal(root):
 Store root in S
 while S is not empty

get node from S
do something with node
store children in S

Does S remind you of something?

A

B C

F GD E

H I

S

A

B C

D E
F

G

H

I

Traversal Strategy — Grab Oldest Node

‣ If we grab the oldest node in S

‣ we’re doing FIFO…

‣ so S is just a queue!

‣ Traversal w/ Queue gives breadth-first traversal

‣ Why?

‣ Queue guarantees a node is processed before its children

‣ Children can be inserted in any order

function bft(root):
 Q = new Queue()
 enqueue root
 while Q is not empty

node = Q.dequeue()
visit(node)
enqueue node’s children

21

Breadth-First Traversal
‣ Start at root
‣ Visit both of its children first,
‣ Then all of its grandchildren,

‣ Then great-grandchildren

‣ etc…

‣ Also known as
‣ level-order traversal

22

A

B C

F GD E

H I

A C D E F G H IB

Depth-First Traversal
‣ What if we grab youngest node in S?
‣ we’re doing LIFO…

‣ so S is a stack!
‣ Traversal w/ Stack gives us…

‣ Depth-first search
‣ start from root
‣ traverse each branch before

backtracking
‣ can produce different orders

23

A

B C

G HE F

I J K

A H G B F K J I EC

A B E F I J K C G H

Depth-First Traversal

‣ Why does Stack give DFT?
‣ Stack guarantees a node’s descendants will be visited before

its sibling’s descendants

‣ Children can be pushed on stack in any order
24

function dft(root):
 S = new Stack()
 push root
 while S is not empty

node = S.pop()
visit(node)
push node’s children

Outline
‣ Tree ADT

‣ Binary Tree ADT

‣ Tree Traversals
‣ Breadth-First Traversal
‣ Depth-First Traversal

‣ Recursive DFT
‣ pre-order, post-order, in-order

‣ Euler Tour Traversal

‣ Traversal Problems

‣ Analysis on perfect binary trees

Recursive Depth-First Traversal
‣ DFT can be implemented recursively
‣ With recursion we can have 3 different orders

‣ pre-order: visits node before visiting left and right
children

‣ post-order: visits each child before visiting node

‣ in-order: visits left child, node and then right child

26

Depth-First Visualizations

27

Pre-order Traversal

28

function preorder(node):
 visit(node)  
 if node has left child
 preorder(node.left)
 if node has right child
 preorder(node.right)

A

B C

F GD E

H I

A D E H I C F GB

Note: like iterative DFT

Post-order Traversal

29

function postorder(node):
 if node has left child
 postorder(node.left)
 if node has right child
 postorder(node.right)
 visit(node)

A

B C

F GD E

H I

D I E B F G C AH

In-order Traversal

30

function inorder(node):
 if node has left child
 inorder(node.left)
 visit(node)
 if node has right child
 inorder(node.right)

A

B C

F GD E

H I

D H E I A F C GB

Outline
‣ Tree ADT

‣ Binary Tree ADT

‣ Tree Traversals
‣ Breadth-First Traversal
‣ Depth-First Traversal

‣ Recursive DFT
‣ pre-order, post-order, in-order

‣ Traversal Problems

‣ Analysis on perfect binary trees

When to Use What Traversal?
‣ How do you know which traversal to use?
‣ Sometimes it doesn’t matter
‣ Often one traversal makes solving problem easier

32

Tree Traversal Problem

Which traversal should be used to decorate nodes with # of descendants?

33
1 minActivity #1

Tree Traversal Problem

34
1 minActivity #1

Which traversal should be used to decorate nodes with # of descendants?

Tree Traversal Problem

35
0 minActivity #1

Which traversal should be used to decorate nodes with # of descendants?

Tree Traversal Problem
‣ Decorating with number of descendants?
‣ Post-order
‣ visits both children before node
‣ easy to calculate # of descendants if you know # of

descendants of both children
‣ try writing pseudo-code for this

36

Tree Traversal Problem

Given root, which traversal should be used to test if tree is perfect?

37
1 minActivity #2

Tree Traversal Problem

38
1 minActivity #2

Given root, which traversal should be used to test if tree is perfect?

Tree Traversal Problem

39
0 minActivity #2

Given root, which traversal should be used to test if tree is perfect?

Tree Traversal Problem
‣ Testing if tree is perfect
‣ Breadth-first
‣ traverses tree level by level
‣ keep track of how many nodes at level
‣ each level should have twice as many as previous

level

40

Tree Traversal Problem

‣ Best traversal?

‣ post-order: need to know size of subfolders
before you can compute size of a folder

41

Tree Traversals Problems

‣ Best traversal?
‣ post-order: to evaluate operation, you first need to

evaluate sub-expression on each side
‣ What should you do when you get to a leaf?

42

(7 – (4 + 3)) + (9 / 3)

+

- /

9 37 +

4 3

‣ Evaluate arithmetic expression tree

=

Tree Traversals Problems

‣ Best traversal?
‣ in-order: gives nodes from left to right

43

7 – 4 + 3 + 9 / 37

+

- /

9 3+

4 3

‣ Given tree, print out expression w/o
parentheses

=

Euler Tour Traversal
‣ Generic traversal of binary tree
‣ pre-order, post-order and in-order

are special cases

‣ Each node visited 3 times
‣ left, bottom, right

44

10

5

1

2

3

4

6

7

8

9

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

A

Euler Tour Traversal
‣ Visit node on the

‣ left ⟹ pre-order traversal

‣ bottom ⟹ in-order traversal

‣ right ⟹ post-order traversal

45

L
B

R

Euler Tour Traversal

46

function eulerTour(node):
 # pre-order

visitLeft(node)

if node has left child:
eulerTour(node.left)

in-order
visitBelow(node)

if node has right child:
eulerTour(node.right)

post-order
visitRight(node)

10

5

1

2

3

4

6

7

8

9

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Tree Traversal Problems

‣ Best traversal?
‣ Euler tour

47

7

+

- /

9 3+

4 3

‣ Given tree, print out expression w/
parentheses

= (7 – (4 + 3)) + (9 / 3)

Tree Traversal Problem
‣ Best traversal?
‣ Euler tour

‣ Internal nodes
‣ For pre-order/left visit, print “(“
‣ For in-order/bottom visit, print operator
‣ For post-order/right visit, print “)”

‣ Leaves
‣ Don’t do anything for pre-order/left and post-order/right visits
‣ For in-order/bottom visit, print number

48

7

+

- /

9 3+

4 3

Outline
‣ Tree ADT

‣ Binary Tree ADT

‣ Tree Traversals
‣ Breadth-First Traversal
‣ Depth-First Traversal

‣ Recursive DFT
‣ pre-order, post-order, in-order

‣ Traversal Problems

‣ Analysis on perfect binary trees

Analyzing Binary Trees
‣ Many things can be modeled as binary trees
‣ ex: Fibonacci recursive tree

50

F (n) = F (n� 1) + F (n� 2)

Analyzing Binary Trees
‣ Knowing facts about binary trees can help with runtime analysis

‣ ex: how many recursive calls are made by a binary recursive
tree of height n?

‣ Perfect binary trees are easier to analyze…

‣ …so often we use them to estimate analysis of general trees

51

Analyzing Perfect Binary Trees
‣ Number of nodes in perfect binary tree of height h:
‣ 2h+1 - 1

‣ Height of a perfect binary tree with n nodes:
‣ log2(n+1)-1

‣ Number of leaves in perfect binary tree of height h:
‣ 2h

‣ Number of nodes in perfect binary tree with L leaves:
‣ 2L-1

52

Induction on Perfect Binary Trees
‣ Can use induction to prove things about PBTs
‣ Using recursive definition of perfect binary trees
‣ Tree T is a perfect binary tree if
‣ it has only one node
‣ has root with left and right subtrees which are both

perfect binary trees of same height

‣ (if subtrees have height h, then T has height h+1)

53

Example Inductive Proof on PBTs
‣ Prove P(n):

‣ number of nodes in a perfect binary tree of height n is f(n)=2n+1–1

‣ Base case P(0):

‣ number of nodes in perfect binary tree of height 0 is 1 (by definition)

‣ f(0) = 20+1–1 = 2–1 = 1

‣ Inductive hypothesis:

‣ assume P(k) is true (for some k≥0)

‣ in words: the number of nodes in perfect binary tree of height k is
f(k)=2k+1–1

54

Example Inductive Proof on PBTs
‣ Then prove that P(k+1) is true:

‣ Let T be any perfect binary tree of height k+1

‣ By definition, T consists of root with two subtrees, L and R, which are both
perfect binary trees of height k

‣ By inductive hypothesis, L and R both have 2k+1–1 nodes

‣ So total number of nodes in T is:
‣ 2*(2k+1–1)+1= 2k+2–2+1 = 2(k+1)+1–1

‣ Since we’ve proved
‣ P(0) is true
‣ P(k) implies P(k+1) (for any k≥0)
‣ It follows by induction that P(n) is true for all n≥0

55

Tree ADT vs. Data Structure
‣ Is a Tree an ADT or a data structure?
‣ It’s both
‣ The answer depends on the context

‣ Trees are useful and interesting abstract objects
‣ that capture parent/child relationships
‣ they can be implemented using different data structures
‣ some trees can be implemented using arrays
‣ they can also be implemented using dictionaries

‣ But when computer scientists talk about Trees they often mean
‣ the “linked tree” data structure
‣ trees that are implemented using nodes and pointers

56

