Tree Properties & Traversals

CS16: Introduction to Data Structures & Algorithms
Spring 2018
Outline

- Tree & Binary Tree ADT
- Tree Traversals
 - Breadth-First Traversal
 - Depth-First Traversal
- Recursive DFT
 - pre-order, post-order, in-order
- Euler Tour Traversal
- Traversal Problems
- Analysis on perfect binary trees
What is a Tree?

- Abstraction of hierarchy
- Tree consists of
 - nodes with parent/child relationship
- Examples
 - Files/folders (Windows, MacOSX, …, CS33)
 - Merkle Trees (Bitcoin, CS166)
 - Encrypted Dictionaries, Oblivious RAMs (CS2950-v)
 - Datacenter Networks (Azure, AWS, Google, CS168)
 - Distributed Systems (Distributed Storage, Cluster computing, CS138)
 - AI & Machine Learning (Decision trees, Neural Networks, CS141, CS142)
Tree “Anatomy”

tree diagram with nodes labeled A, B, C, D, E, F, G, H, I, J, K.

- **Root** node A
- **Internal nodes** B, C, D
- **Subtree** rooted at B and C
- **Leaves/External nodes** E, F, G, H, I, J, K

Dimensions:
- **Internal nodes:** B, C, D
- **Subtree:** rooted at B and C
- **Leaves/External nodes:** E, F, G, H, I, J, K

Height of the tree.
Tree Terminology

- **Root**: node without a parent (A)
- **Internal node**: node with at least one child (A, B, C, F)
- **External node (leaf)**: node without children (E, I, J, K, G, H, D)
- **Parent node**: node immediately above a given node (parent of C is A)
- **Child node**: node(s) immediately below a given node (children of C are G and H)
- **Ancestors of a node**:
 - parent, grandparent, grand-grandparent, etc. (ancestors of G are C, A)
- **Descendant of a node**: child, grandchild, grand-grandchild, etc.
- **Depth of a node**: number of ancestors (I has depth 3)
- **Height of a tree**:
 - maximum depth of any node (tree with just a root has height 0, this tree has height 3)
- **Subtree**: tree consisting of a node and its descendants
Tree ADT

- Tree methods:
 - int \texttt{size}(): returns the number of nodes
 - boolean \texttt{isEmpty}(): returns true if the tree is empty
 - Node \texttt{root}(): returns the root of the tree

- Node methods:
 - Node \texttt{parent}(): returns the parent of the node
 - Node[] \texttt{children}(): returns the children of the node
 - boolean \texttt{isInternal}(): returns true if the node has children
 - boolean \texttt{isExternal}(): returns true if the node is a leaf
 - boolean \texttt{isRoot}(): returns true if the node is the root
Binary Trees

› Internal nodes have at most 2 children
 › left and right
 › if only 1 child, still need to specify if left or right

› Recursive definition
 › Tree with a single node or
 › Tree whose root has at most 2 children
 › each of which is a binary tree
Binary Tree ADT

- In addition to Tree methods *binary* trees have:
 - Node `left()`: returns the left child if it exists, else NULL
 - Node `right()`: returns the right child if it exists, else NULL
 - Node `hasLeft()`: returns TRUE if node has left child
 - Node `hasRight()`: returns TRUE if node has right child
Perfection

- A binary tree is **perfect** if
 - every level is completely full

Not perfect

Perfect!
Completeness

- A binary tree is **left-complete** if
 - every level is completely full, possibly excluding the lowest level
 - all nodes are as far left as possible
Aside: Decorations

- Decorating a node
 - associating a value to it

- Two approaches
 - Add new attribute to each node
 - `ex: node.numDescendants = 5`
 - Maintain dictionary that maps nodes to decoration
 - do this if you can’t modify tree
 - `ex: descendantDict[node] = 5`
Outline

- Tree ADT
- Binary Tree ADT
- **Tree Traversals**
 - Breadth-First Traversal
 - Depth-First Traversal
- Recursive DFT
 - pre-order, post-order, in-order
- Euler Tour Traversal
- Traversal Problems
- Analysis on perfect binary trees
Tree Traversals

- Not obvious how to visit every node of a tree
 - unlike arrays which have a natural order
- Tree traversal
 - algorithm for visiting every node in a tree
- Many possible tree traversals
 - each visit nodes in different orders
Breadth- vs. Depth-First Traversals
Traversal Strategy

- Array traversal can be done with a **for** loop
 - Why?

- What about a tree traversal?
 - Why not?

- For tree traversal we’ll use a **while** loop
function **traversal**(root):
 Store root in S
 while S is not empty
 get node from S
 do something with node
 store children in S
Traversals Strategy

function **traversal** (root):
 Store root in S
 while S is not empty
 get node from S
 do something with node
 store children in S

- What is S exactly?
 - Where we store nodes until we can process them
- Which node of S should we process next?
 - the first? the last?
Traversals Strategy — Get First

function **traversal**(root):
 Store root in S
 while S is not empty
 get node from S
 do something with node
 store children in S
Traversing Strategy — Get First

function traversal(root):
 Store root in S
 while S is not empty
 get node from S
 do something with node
 store children in S

Does S remind you of something?
Traversals Strategies — Get First

- If we get first node in S
 - we're doing FIFO...
 - so S is a queue!
 - Traversal w/ Queue gives breadth-first traversal

- Why?
 - Queue guarantees node is processed before its children
 - Children can be inserted in any order

```plaintext
function bft(root):
    Q = new Queue()
    enqueue root
    while Q is not empty
        node = Q.dequeue()
        visit(node)
        enqueue node’s left & right children
```
Breadth-First Traversal

- Start at root
 - Visit both of its children first,
 - Then all of its grandchildren,
 - Then great-grandchildren
 - etc…
- Also known as
 - level-order traversal
Depth-First Traversal

‣ What if we process youngest/last element in S?
 ‣ we’re doing LIFO…
 ‣ so S is a stack!
 ‣ Traversal w/ Stack gives us…

‣ Depth-first search
 ‣ start from root
 ‣ traverse each branch before backtracking
 ‣ can produce different orders
Depth-First Traversal

function dft(root):
 S = new Stack()
 push root
 while S is not empty
 node = S.pop()
 visit(node)
 push node’s left & right children

- Why does Stack give DFT?
 - Stack guarantees entire branch will be visited before visiting another branch
- Children can be pushed on stack in any order
Outline

- Tree ADT
- Binary Tree ADT
- Tree Traversals
 - Breadth-First Traversal
 - Depth-First Traversal
- **Recursive DFT**
 - pre-order, post-order, in-order
- Euler Tour Traversal
- Traversal Problems
- Analysis on perfect binary trees
Recursive Depth-First Traversal

- DFT can be implemented recursively
- With recursion we can have 3 different orders
 - **pre-order**: visits node before visiting left and right children
 - **post-order**: visits each child before visiting node
 - **in-order**: visits left child, node and then right child
Depth-First Visualizations
Pre-order Traversal

function **preorder**(node):
 visit(node)
 if node has left child
 preorder(node.left)
 if node has right child
 preorder(node.right)

Note: like iterative DFT
Post-order Traversal

function **postorder**(node):
 if node has left child
 postorder(node.left)
 if node has right child
 postorder(node.right)
 visit(node)
In-order Traversal

function `inorder(node):`
 if node has left child
 `inorder(node.left)`
 visit(node)
 if node has right child
 `inorder(node.right)`

```
D  B  H  E  I  A  F  C  G
```

Outline

- Tree ADT
- Binary Tree ADT
- Tree Traversals
 - Breadth-First Traversal
 - Depth-First Traversal
- Recursive DFT
 - pre-order, post-order, in-order
- Traversal Problems
- Analysis on perfect binary trees
When to Use What Traversal?

- How do you know which traversal to use?
- Sometimes it doesn’t matter
- Often one traversal makes solving problem easier
Which traversal should be used to decorate nodes with # of descendants?

Activity #1

1 min
Tree Traversals Problems

Activity #1

Which traversal should be used to decorate nodes with # of descendants?
Which traversal should be used to decorate nodes with # of descendants?

Activity #1
Tree Traversals Problems

- Decorating with number of descendants?
- **Post-order**
 - visits both children before node
 - easy to calculate # of descendants if you know # of descendants of both children
 - try writing pseudo-code for this
Tree Traversals Problems

Given root, which traversal should be used to test if tree is perfect?
Given root, which traversal should be used to test if tree is perfect?
Given root, which traversal should be used to test if tree is perfect?
Tree Traversals Problems

- Testing if tree is perfect
- **Breadth-first**
 - traverses tree level by level
 - keep track of how many nodes at level
 - each level should have twice as many as previous level
Tree Traversals Problems

- Evaluate arithmetic expression tree

\[(7 - (4 + 3)) + (9 / 3) \quad \equiv \]

- Best traversal?
 - **post-order**: to evaluate operation, you first need to evaluate sub-expression on each side
 - What should you do when you get to a leaf?
Tree Traversals Problems

- Given tree, print out expression w/o parentheses

```
7
+ 9 3
- 4 += 7 - 4 + 3 + 9 / 3
+ 3
4
```

- Best traversal?

 - in-order: gives nodes from left to right
Euler Tour Traversal

- Generic traversal of binary tree
 - pre-order, post-order and in-order are special cases
- Each node visited 3 times
 - left, bottom, right
Euler Tour Traversal

- Visit on
 - **left**: pre-order traversal
 - **bottom**: in-order traversal
 - **right**: post-order traversal
function eulerTour(node):
 # pre-order
 visitLeft(node)

 if node has left child:
 eulerTour(node.left)

 # in-order
 visitBelow(node)

 if node has right child:
 eulerTour(node.right)

 # post-order
 visitRight(node)
Tree Traversals Problems

- Given tree, print out expression w/ parentheses

\[(7 - (4 + 3)) + (9 / 3) \]

- Best traversal?

- Euler tour
Tree Traversals Problems

- Best traversal?
 - Euler tour
- Internal nodes
 - For pre-order visit, print ‘(‘
 - For in-order visit, print operator
 - For post-order visit, print ‘)‘
- Leaves
 - Don’t do anything for pre-order and post-order visits
 - For in-order visit, print number
Outline

- Tree ADT
- Binary Tree ADT
- Tree Traversals
 - Breadth-First Traversal
 - Depth-First Traversal
- Recursive DFT
 - pre-order, post-order, in-order
- Traversal Problems
- Analysis on perfect binary trees
Analyzing Binary Trees

- Many things can be modeled as binary trees
 - ex: Fibonacci recursive tree

- Knowing certain facts about binary trees helps with analysis
 - ex: how many recursive calls are made by a binary recursive tree of height n?

- Perfect binary trees are easier to analyze...

- ...so we use them to estimate analysis of general trees
Analyzing **Perfect** Binary Trees

- Number of nodes PBT of height h:
 - $2^{h+1} - 1$

- Height of a PBT with n nodes:
 - $\log_2(n+1)$

- Number of leaves in PBT of height h:
 - 2^h

- Number of nodes in PBT with L leaves:
 - $2L - 1$
Induction on Perfect Binary Trees

- Can use induction to prove things about PBTs
- Alternative definition of perfect binary trees
- Tree T is a perfect binary tree if
 - it has only one node
 - or has root with left and right subtrees which are both perfect binary trees of same height
 - (if subtrees have height h, then T has height $h+1$)
Example Inductive Proof on PBTs

- Prove $P(n)$:
 - number of nodes in a PBT of height n is $2^{n+1} - 1$

- Base case $P(0)$:
 - $2^{0+1} - 1 = 2 - 1 = 1$
 - Number of nodes in PBT of height 0 is 1, because tree only has a root by definition

- Inductive hypothesis:
 - assume $P(k)$ is true (for some $k \geq 0$)
 - in other words: the number of nodes in PBT of height k is $2^{k+1} - 1$
Example Inductive Proof on PBTs

- Then prove that \(P(k+1) \) is true:
 - Let \(T \) be any PBT of height \(k+1 \)
 - By definition, \(T \) consists of root with two subtrees, \(L \) and \(R \), which are both PBTs of height \(k \)
 - By inductive hypothesis, \(L \) and \(R \) both have \(2^{k+1} - 1 \) nodes
 - Number of nodes in \(T \) is therefore:
 \[
 1 + 2 \times (2^{k+1} - 1) = 1 + 2^{k+2} - 2 = 2^{(k+1)+1} - 1
 \]
 - Since we've proved
 - \(P(0) \) is true
 - \(P(k) \) implies \(P(k+1) \) for any \(k \geq 0 \)
 - It follows by induction that \(P(n) \) is true for all \(n \geq 0 \)