Iree Properties &
lraversals

CS16: Introduction to Data Structures & Algorithms
Summer 202 |

o0 fi seny Info

s Seny
v Modified: Today, 16:46

General:

Kind: Folder
Size:
Where: Macintosh HD » Users
Created: Sunday, July 22, 2018 at 13:58
Modified: January 20, 2019 at 16:46

Shared folder
Locked

More Info:

Last opened: January 20, 2019 at 17:05

Name & Extension:

Comments:

Preview:

» How does OS calculate size of
directories!

Outline

» [ree & Binary Tree AD T

» Depth-first traversal

» pre-order;, post-order, in-order

» Euler Tour

» Breadth-first traversal
» lraversal Problems

» Analysis on perfect binary trees

What is a [ree!

» Abstraction of hierarchy

» [ree consists of

» nodes with parent/child relationship

» Examples
» Files/folders (Windows, MacOSX, ..., CSCI 0330)
» Merkle Trees (Bitcoin, CSCI 1660)
» Encrypted Data Structures (CSCI 2950-v)
» Datacenter Networks (Azure, AWS, Google, CSCI 1680)
» Distributed Systems (Distributed Storage, Cluster computing, CSCI 1380)
» Al & Machine Learning (Decision trees, CSCI 1410, CSCI 1420)
» Parse trees (CSCI 1460, CSCI 1260)
» Abstract syntax trees (CSCI 1730, CSCI 1260)

4

Tree "Anatomy”

internal

v
subtree

oo oo —mo o oo =

Does this remind you of something?

Iree lerminology

» Root: node without a parent (A)

» Internal node: node with at least one child (A, B, C, F)

» Leaf (external node): node without children (E, |, |, K, G, H, D)

» Parent node: node immediately above a given node (parent of C is A)

» Child node: node(s) immediately below a given node (children of C are G and H)

» Ancestors of a node:

» parent, grandparent, grand-grandparent, etc. (ancestors of G are C, A)
» Descendant of a node: child, grandchild, grand-grandchild, etc.
» Depth of a hode: number of ancestors (I has depth 3)

» Height of a tree:
» maximum depth of any node (tree with just a root has height O, this tree has height 3)

» Subtree: tree consisting of a node and its descendants

Tree ADT

» [ree methods:

» Int size(): returns the number of nodes

» boolean isEmpty(). returns true If the tree Is empty

» Node root(): returns the root of the tree

» Node methods:
» Node parent(): returns the parent of the node

» Node| | ehildren(): returns the children of the node

» boolean isInternal(): returns true If the node has children

» boolean isExternal() returns true If the node is a lea

» boolean isRoot(): returns true if the node Is the root

v

Binary lrees

» Internal nodes have at most 2 children: left & right

» 1f only 1 child, still need to specify If left or right

» Recursive definition of a Binary Tree

» asingle node
» or aroot node with at most 2 children
» each of which is a binary tree

» s a binary tree!

a binary tree!

Binary lree AD |

» In addition to Tree methods binary trees also support:

4

4

N

N\
N\
N\

OC

OC

OC

OC

e left(): returns the left child If it exists, else NULL

e right(): returns the right child If it exists, else NULL
e hasLeft() returns TRUE If node has left chilc
e hasRight(): returns TRUE If node has right ¢

Perfection

» A binary tree Is perfect it

» every level Is completely full

Not perfect Perfect!

Completeness

» A binary tree is left-complete if

» every level 1s completely full, possibly excluding the lowest level
» all nodes are as far left as possible

Left- Not left-
complete! complete

Aside: Decorations

» Decorating a node

» associating a value to 1t

» [wo approaches

» Add new attribute to each node
» ex: node.numDescendants = 5

» Maintain dictionary that maps nodes to decoration
» do this If you can't modity tree
» ex:.descendantDict[node] = 5

17

|ree [raversals

» How would you enumerate every item In an array!

» use a forloop from 1 ton and read A[1°

» How would you enumerate every item in a (linked) Tree!
» not obvious...
» because Irees don't have an “obvious™ order like arrays
» [ree traversal
» algorithm that visits every node of a tree

» Many possible tree traversals

» each kind of traversal visits nodes In different order

15

Pre-order |raversal

function preorder(node):
visit (node)
i1f node has left child
preorder (node.left)

1f node has right child
preorder (node.right)

ABDEHI CFG

Post-order |raversal

function postorder(node):
1f node has left child
postorder (node.left)

1f node has right child
postorder (node.right)

visit (node)

DHI EBF GCA

In-order Iraversal

function inorder (node):
1f node has left child
inorder (node.left)
visit(node)

1f node has right child
inorder (node.right)

DBHEI A FCG

Depth-first vs. breadth-first

» pre-order, In-order, post-oder: all depth-first
» entire left branch visited before entire right branch

» can also traverse breadth-first: higsher nodes before lower nodes

'terative traversal

function traversal(root):
Store root in S
while S is not empty
get node from S

do something with node

store children in S

'terative traversal

function traversal(root):
Store root in S
while S 1s not empty
get node from S

do something with node

store children in S

» What is S exactly?
» A place we store nodes until we can process them

» Which node of S should we process next?

» the first! the last!

terative Grab Oldest Node

function traversal(root):

Store root in S

while S 1s not empty
get node from S
do something with node
store children in S

ABCDEFGHI

20

Traversal Strategy — Grab Oldest Node

function traversal(root):

Store root in S

while S 1s not empty
get node from S
do something with node
store children in S

Traversal Strategy — Grab Oldest Node

function bft(root):

QO = new Queue()

» |f we grab the oldest node in S enqueue root
while Q is not empty
T eliedolng FIFO. .. node = Q.dequeue()
visit(node)
3 sc>Sisjugta¢queue! enqueue node'’s children

» Traversal w/ Queue gives breaath-first traversal

» Why!

» Queue guarantees a node Is processed before 1ts children

» Children can be inserted in any order

)

Breadth-First [raversal

» Start at root

» Visit both of ts children first,

» Then all of its grandchildren,

» [hen great-grandchildren

» etc...

» Also known as
A BCDEVFGHI

» |level-order traversal

285

Depth-rirst [raversal

» What If we grab youngest node
n S

» we're doing LIFO...

» SO S Is a stack

» Traversal w/ Stack gives us...
» Depth-first search

> GElriliirena kelel:

» traverse each branch before
backtracking

L

terative depth-first traversal

function dft(root):
S = new Stack()
push root

while S is not empty

node = S.pop()
visit(node)

push node’s children

» Why does Stack give DFT?

» Stack guarantees a node’'s descendants will be visited before
ts sibling's descendants

» Children can be pushed on stack in any order

i

Depth-first traversal

function dft(root): function preorder (node):
S = new Stack() visit(node)
push root 1f node has left child

while S is not empty preorder (node.left)
node = S.pop() 1f node has right child

visit (node) preorder (node.right)

push node’s children

» Which do you prefer?

26

VWhen to Use What Iraversal!

» How do you know which traversal to use!

» Sometimes It doesn't matter

» Often one traversal makes solving problem easier

T

|ree Iraversal Problem

000 fi seny Info

s Seny

[Modified: Today, 16:46 /\

General:

Kind: Folder
Size:

Where: Macintosh HD » Users
Created: Sunday, July 22, 2018 at 13:58 \
Modified: January 20, 2019 at 16:46

Shared folder
Locked

More Info:
Last opened: January 20, 2019 at 17:05

Name & Extension:

Comments:

o » Best traversal?

» post-order: need to know size of subfolders
before you can compute size of a folder

28

Iree lraversal Problem

Which traversal should be used to decorate nodes with # of descendants?

i

|ree Iraversal Problem

» Decorating with number of descendants!?

- Post-order
» Visits both children before node

» easy to calculate # of descendants if you know # of
descendants of both children

» try writing pseudo-code for this

30

Iree lraversal Problem

Given root, which traversal should be used to test if tree Is perfect?

31

|ree Iraversal Problem

» Jesting If tree Is perfect
> Breadth-first

» traverses tree level by level
» keep track of how many nodes at level

» each level should have twice as many as previous
level

B

|ree lraversals Problems

» Given tree, print out expression w/o

parentheses

— T—4+3+9/3

» Best traversal?

» in=order: gives nodes from left to right

B5)

|ree lraversals Problems

» Evaluate arthmetic expression tree

(7—@4+3)+O/3)

» Best traversal!

» post-order: to evaluate operation, you first need to
evaluate sub-expression on each side

» What should you do when you get to a leaf?

D2}

tuler lour lraversal

» Generic traversal of binary tree

» pre-order, post-order and in-order
are special cases

» Each node visited 3 times

» left, bottom, right

515

tuler lour lraversal

s

Visit node on the

4

» left — pre-order traversal

bottom — in-order traversal

>

» right — post-order traversal

36

tuler lour lraversal

function eulerTour (node):
pre-order
visitLeft (node

if node has left child:
eulerTour (node.left)

in-order
visitBelow(node)

1f node has right child:
eulerTour (node.right

post-order

visitRight (node)

B

|ree lraversal Problems

» Given tree, print out expression w/

parentheses

— (7-@4+3)+O/3)

» Best traversal?

» Euler tour

38

» Best traversal!

» Euler tour

» Internal nodes

» For pre-order/left visit, print “("
» For in-order/bottom visit, print operator
» For post-order/right visit, print)"
» Leaves
» Don't do anything for pre-order/left and post-order/right visits

» For In-order/bottom visit, print number

57

Analyzing Binary lrees

» Many things can be modeled as binary trees

» eXx: Fibonaccl recursive tree

F(5)
F(4)

F(n)=F(n—-1)+ F(n—2) o })\

F(3) F(2) E(Z k(1]

)\

F(2) F(1) F(1) FO) F(1) F()

F(1) F(O

)

40

Analyzing Binary lrees

» Knowing facts about binary trees can help with runtime analysis

» ex: how many recursive calls are made by a binary recursive
tree of height n!

» Perfect binary trees are easier to analyze...

» ...S0 often we use them to estimate analysis of general trees

i

Analyzing Perfect Binary lrees

» Number of nodes In perfect binary tree of height h:

S onsd EREISEEE |

» Height of a perfect binary tree with n nodes:
» logz(n+1)-1

» Number of leaves Iin perfect binary tree of height h:
» 2h

» Number of nodes in perfect binary tree with L |eaves:

» 2L-1

i

Induction on Perfect Binary [rees

» Can use Induction to prove things about PBTs
» Using recursive definition of perfect binary trees

» [ree | Is a perfect binary tree If
» It has only one node

» has root with left and right subtrees which are both
perfect binary trees of same height

» (If subtrees have height h, then T has height h+1)

455

cxample Inductive Prootf on PBTs

» Prove P(n):
» number of nodes In a perfect binary tree of height n is £ (n)=2n+1—1
» Basecase P(0):
» number of nodes In perfect binary tree of height 0 i1s 1 (by definition)
O = 20111 = 21 = 1
» Inductive hypothesis:
» assume P (k) is true (for some k=0)

» In words: the number of nodes In perfect binary tree of height k Is
f (k) =2 kH11

44

cxample Inductive Prootf on PBTs

» [hen prove that P (k+1) Is true:

» Let T be any perfect binary tree of height k+1

» By definition, T consists of root with two subtrees, L and R, which are both
berfect binary trees of height k

» By inductive hypothesis, L and R both have 2k+1—1 nodes

So total number of nodes In T Is:

v

> 2% (2k+1—1)+1= 2Kk+2—2+1 = 2(k+l)+1—]
» Since we've proved

» P(0) I1strue

» P(k) mplies P(k+1) (forany k=0)

» [t follows by induction that P (n) Is true for all n=0

2455

Tree AD T vs. Data Structure

» Is a Tree an ADT or a data structure!
» It's both
» [he answer depends on the context

» Trees are useful and interesting abstract objects
» that capture parent/child relationships
» they can be implemented using different data structures
» some trees can be implemented using arrays
» they can also be implemented using dictionaries
» But when computer scientists talk about Trees they often mean
» the “linked tree” data structure
» Implemented using nodes and pointers

46

