# Tree Properties \& Traversals 

CSI 6: Introduction to Data Structures \& Algorithms Summer 2021
合 seny Infc

| Seny |
| :--- |
| Modified: Today, 16:46 |
| Add Tags... |

Kind: Folder
Size: Calculating Size
Where: Macintosh HD • Users
Created: Sunday, July 22, 2018 at 13:58 Modified: January 20, 2019 at 16:46


## Shared folder

Locked

## $\checkmark$ More Info:

Last opened: January 20, 2019 at 17:05
$\nabla$ Name \& Extension:

## seny

- How does OS calculate size of


## > Comments:

$\nabla$ Preview: directories?

## Outline

- Tree \& Binary Tree ADT
- Depth-first traversal
- pre-order, post-order, in-order
- EulerTour
- Breadth-first traversal
- Traversal Problems
- Analysis on perfect binary trees


## What is a Tree?

- Abstraction of hierarchy
- Tree consists of

- nodes with parent/child relationship
- Examples
- Files/folders (Windows, MacOSX, ..., CSCI 0330)
- Merkle Trees (Bitcoin, CSCI I660)
- Encrypted Data Structures (CSCI 2950-v)
- Datacenter Networks (Azure, AWS, Google, CSCI I680)
- Distributed Systems (Distributed Storage, Cluster computing, CSCI I 380)
- Al \& Machine Learning (Decision trees, CSCI I4IO, CSCI I420)
- Parse trees (CSCI I460, CSCI I260)
- Abstract syntax trees (CSCI I730, CSCI I260)


## Tree "Anatomy"



## Tree Terminology

- Root: node without a parent (A)
- Internal node: node with at least one child (A, B, C, F)
- Leaf (external node): node without children (E, I, J, K, G, H, D)
- Parent node: node immediately above a given node (parent of $C$ is $A$ )
- Child node: node(s) immediately below a given node (children of C are G and H )
- Ancestors of a node:
- parent, grandparent, grand-grandparent, etc. (ancestors of G are C, A)
- Descendant of a node: child, grandchild, grand-grandchild, etc.
- Depth of a node: number of ancestors (1 has depth 3)
- Height of a tree:
- maximum depth of any node (tree with just a root has height 0 , this tree has height 3 )
- Subtree: tree consisting of a node and its descendants


## Tree ADT

- Tree methods:
- int size( ): returns the number of nodes
- boolean isEmpty( ): returns true if the tree is empty
- Node root ( ): returns the root of the tree
- Node methods:
- Node parent( ): returns the parent of the node
- Node[ ] children( ): returns the children of the node
- boolean isInternal( ): returns true if the node has children
- boolean isExternal( ): returns true if the node is a leaf
- boolean isRoot( ): returns true if the node is the root


## Binary Trees

- Internal nodes have at most 2 children: left \& right
- if only 1 child, still need to specify if left or right
- Recursive definition of a Binary Tree
- a single node
- or a root node with at most 2 children
- each of which is a binary tree
- Is Fa binary tree?
- Is

a binary tree?


## Binary Tree ADT

- In addition to Tree methods binary trees also support:

- Node left( ): returns the left child if it exists, else NULL
- Node right( ): returns the right child if it exists, else NULL
- Node hasLeft( ): returns TRUE if node has left child
- Node hasRight( ): returns TRUE if node has right child



## Perfection

- A binary tree is perfect if
- every level is completely full



Perfect!

## Completeness

- A binary tree is left-complete if
- every level is completely full, possibly excluding the lowest level - all nodes are as far left as possible


Leftcomplete!


Not leftcomplete

## Aside: Decorations

- Decorating a node
- associating a value to it

- Two approaches
- Add new attribute to each node
- ex: node.numDescendants $=5$
- Maintain dictionary that maps nodes to decoration
- do this if you can't modify tree
- ex: descendantDict[node] $=5$


## Tree Traversals

- How would you enumerate every item in an array?
- use a for loop from i to n and read A [ i ]
- How would you enumerate every item in a (linked) Tree?
- not obvious...
- because Trees don't have an "obvious" order like arrays
- Tree traversal
- algorithm that visits every node of a tree
- Many possible tree traversals
- each kind of traversal visits nodes in different order


## Pre-order Traversal

```
function preorder(node):
    visit(node)
    if node has left child
    preorder(node.left)
    if node has right child
    preorder(node.right)
```



ABDEHICFG

## Post-order Traversal

```
function postorder(node):
    if node has left child
        postorder(node.left)
    if node has right child
        postorder(node.right)
    visit(node)
```



DHIEBFGCA

## In-orderTraversal

```
function inorder(node):
    if node has left child
        inorder(node.left)
    visit(node)
    if node has right child
        inorder(node.right)
```



DBHEIAFCG

## Depth-first vs. breadth-first

- pre-order, in-order, post-oder: all depth-first
- entire left branch visited before entire right branch
- can also traverse breadth-first: higher nodes before lower nodes



## Iterative traversal

## function traversal(root):

Store root in $S$
while $S$ is not empty get node from S do something with node store children in $S$


## Iterative traversal

```
function traversal(root):
```

    Store root in S
    while \(S\) is not empty
    get node from \(S\)
    do something with node
    store children in \(S\)
    

- What is $\mathbf{S}$ exactly?
- A place we store nodes until we can process them
- Which node of $\mathbf{S}$ should we process next?
- the first? the last?


## Iterative - Grab Oldest Node

function traversal(root):<br>Store root in $S$<br>while $S$ is not empty<br>get node from $S$<br>do something with node store children in $S$



ABCDEFGHI

## Traversal Strategy - Grab Oldest Node



## Traversal Strategy — Grab Oldest Node

- If we grab the oldest node in $\mathbf{S}$
- we're doing FIFO...
- so $\mathbf{S}$ is just a queue!

```
function bft(root):
    Q = new Queue()
    enqueue root
    while Q is not empty
        node = Q.dequeue()
        visit(node)
        enqueue node's children
```

- Traversal w/ Queue gives breadth-first traversal
- Why?
- Queue guarantees a node is processed before its children
- Children can be inserted in any order


## Breadth-First Traversal

- Start at root
- Visit both of its children first,
- Then all of its grandchildren,
- Then great-grandchildren - etc...
- Also known as
- level-order traversal


ABCDEFGHI

## Depth-First Traversal

- What if we grab youngest node in $\mathbf{S}$ ?
- we're doing LIFO...
- so $\mathbf{S}$ is a stack!
- Traversal w/ Stack gives us...
- Depth-first search
- start from root
- traverse each branch before backtracking


## Iterative depth-first traversal

```
function dft(root):
    S = new Stack()
    push root
    while S is not empty
        node = S.pop()
        visit(node)
        push node's children
```

- Why does Stack give DFT?
- Stack guarantees a node's descendants will be visited before its sibling's descendants
- Children can be pushed on stack in any order


## Depth-first traversal

```
function dft(root):
    S = new Stack()
    push root
    while S is not empty
        node = S.pop()
        visit(node)
push node's children
```

function preorder(node): visit(node)
if node has left child preorder(node.left)
if node has right child preorder(node.right)
-Which do you prefer?

## When to Use What Traversal?

- How do you know which traversal to use?
- Sometimes it doesn't matter
- Often one traversal makes solving problem easier


## Tree Traversal Problem



- Best traversal?
- post-order: need to know size of subfolders before you can compute size of a folder


## Tree Traversal Problem

Which traversal should be used to decorate nodes with \# of descendants?

## Tree Traversal Problem

- Decorating with number of descendants?
- Post-order
- visits both children before node
- easy to calculate \# of descendants if you know \# of descendants of both children
- try writing pseudo-code for this


## Tree Traversal Problem

Given root, which traversal should be used to test if tree is perfect?

## Tree Traversal Problem

- Testing if tree is perfect
- Breadth-first
- traverses tree level by level
- keep track of how many nodes at level
- each level should have twice as many as previous level


## Tree Traversals Problems



- Best traversal?
- in-order: gives nodes from left to right


## Tree Traversals Problems

- Evaluate arithmetic expression tree
$(7-(4+3))+(9 / 3)=$
- Best traversal?

- post-order: to evaluate operation, you first need to evaluate sub-expression on each side
- What should you do when you get to a leaf?


## Euler Tour Traversal

- Generic traversal of binary tree
- pre-order, post-order and in-order
 are special cases
- Each node visited 3 times
- left, bottom, right



## Euler Tour Traversal

- Visit node on the
- left $\Longrightarrow$ pre-order traversal
- bottom $\Longrightarrow$ in-order traversal
- right $\Longrightarrow$ post-order traversal



## Euler Tour Traversal

## function eulerTour(node): <br> \# pre-order <br> visitLeft(node)

if node has left child: eulerTour(node.left)
\# in-order
visitBelow(node)
if node has right child: eulerTour(node.right)
\# post-order
visitRight(node)


## Tree Traversal Problems



- Best traversal?
- Euler tour


## Tree Traversal Problem

- Best traversal?
- Euler tour
- Internal nodes
- For pre-order/left visit, print "("
- For in-order/bottom visit, print operator
- For post-order/right visit, print ")"
- Leaves
- Don't do anything for pre-order/left and post-order/right visits
- For in-order/bottom visit, print number


## Analyzing Binary Trees

- Many things can be modeled as binary trees
- ex: Fibonacci recursive tree

$$
F(n)=F(n-1)+F(n-2)
$$



## Analyzing Binary Trees

- Knowing facts about binary trees can help with runtime analysis
- ex: how many recursive calls are made by a binary recursive tree of height n ?
- Perfect binary trees are easier to analyze...
- ...so often we use them to estimate analysis of general trees


## Analyzing Perfect Binary Trees

- Number of nodes in perfect binary tree of height h:
- $2^{\text {h+1 }}-1$
- Height of a perfect binary tree with n nodes:
- $\log _{2}(\mathrm{n}+1)-1$
- Number of leaves in perfect binary tree of height h:
- $2^{\text {h }}$
- Number of nodes in perfect binary tree with L leaves:
- 2L-1


## Induction on Perfect Binary Trees

- Can use induction to prove things about PBTs
- Using recursive definition of perfect binary trees

Tree $T$ is a perfect binary tree if

- it has only one node
- has root with left and right subtrees which are both perfect binary trees of same height
- (if subtrees have height $h$, then $T$ has height $h+1$ )


## Example Inductive Proof on PBTs

- Prove P(n):
- number of nodes in a perfect binary tree of height $n$ is $f(n)=2^{n+1}-1$
- Base case $\mathrm{P}(0)$ :
- number of nodes in perfect binary tree of height 0 is 1 (by definition)
- $\mathrm{f}(0)=2^{0+1}-1=2-1=1$
- Inductive hypothesis:
- assume $P(k)$ is true (for some $k \geq 0$ )
- in words: the number of nodes in perfect binary tree of height k is $f(k)=2^{k+1}-1$


## Example Inductive Proof on PBTs

- Then prove that $P(k+1)$ is true:
- Let T be any perfect binary tree of height $\mathrm{k}+1$
- By definition, T consists of root with two subtrees, L and R , which are both perfect binary trees of height k
- By inductive hypothesis, L and R both have $2^{\mathrm{k}+1}$-1 nodes
- So total number of nodes in $T$ is:

$$
\text { - } 2 *\left(2^{k+1}-1\right)+1=2^{k+2}-2+1=2^{(k+1)+1}-1
$$

- Since we've proved
- $P(0)$ is true
- $P(k)$ implies $P(k+1)$ (for any $k \geq 0)$
- It follows by induction that $P(n)$ is true for all $n \geq 0$


## Tree ADT vs. Data Structure

- Is a Tree an ADT or a data structure?
- It's both
- The answer depends on the context
- Trees are useful and interesting abstract objects

- that capture parent/child relationships
- they can be implemented using different data structures
- some trees can be implemented using arrays
- they can also be implemented using dictionaries
- But when computer scientists talk about Trees they often mean
- the "linked tree"' data structure
- implemented using nodes and pointers

