Binary Search

CS16: Introduction to Data Structures & Algorithms
Spring 2018
Outline

- Binary search
- Pseudo-code
- Analysis
- In-place binary search
- Iterative binary search
Phonebook Search

Activity #1

2 min
Phonebook Search

2 min

Activity #1
Phonebook Search

Activity #1

1 min
Phonebook Search

0 min

Activity #1
The Problem

- Is an item x in a sorted array?
 - ex: is 5 in the array above?
- Idea #0
 - scan array to find x
 - $O(n)$ running time
- Can we do better?

Let’s use the fact that array is sorted...
The Problem

- Observation #1
 - we can stop searching for 11 if we reach 12
 - we can stop searching for x if we reach y > x

- Why?
 - since array is sorted, 11 can’t be after 12
 - since array is sorted, x can’t be after y

- But what if we’re looking for 25?
The Problem

- Observation #1
 - we can stop searching for x if we reach $y > x$

- Observation #2
 - what happens if we compare x to middle element?
 - if $x = \text{mid}$, then we found x
 - if $x < \text{mid}$, then x cannot be in right half of array
 - if $x > \text{mid}$, then x cannot be in left half of array
The Problem

- Using observation #2
 - We got rid of half the array!
- What if do it again?
 - same problem...but half the size!
- Does this remind you of something?
The Problem

Find 5

1 1 3 4 7 8 10 10 12 18 19 21 23 23 24

5 < 10

1 1 3 4 7 8 10

5 > 4

7 8 10

5 < 8

7

How many comparisons?
Analysis

- How many comparisons on array of size n?
 - after each comparison we cut array in half
 - how many times can we split array in 2 before we get array of size 1?
 - \(\log_2(n) \) times
- So what is runtime of binary search?
 - \(O(\log n) \)?
- Let’s look at pseudo-code!
function binarysearch(A, x):
 if A.size == 0:
 return false
 if A.size == 1:
 return A[0] == x
 mid = A.size / 2
 if x == A[mid]:
 return true
 if x > A[mid]:
 return binarysearch(A[mid+1...end], x)
 if x < A[mid]:
 return binarysearch(A[0...mid-1], x)
Binary Search Analysis

- Binary search implementation is recursive...
- So how do we analyze it?
 - write down the recurrence relation
 - solve it with the substitution method (plug & chug + induction)
- The recurrence relation of Binary Search is
 - \(T(n) = T(n/2) + f(n) \), with \(T(1) = c \)
 - where \(f(n) \) is the work done at each level of recursion
- Where does \(T(n/2) \) come from?
 - because we cut the problem in half at each level of recursion
- What is \(f(n) \)?
function `binarysearch(A, x)`:
if A.size == 0:
 return false
if A.size == 1:
 return A[0] == x
mid = A.size / 2
if x == A[mid]:
 return true
if x > A[mid]:
 return binarysearch(A[mid+1…end], x)
if x < A[mid]:
 return binarysearch(A[0…mid-1], x)

`O(1)` for each step.
Binary Search Analysis

- Recurrence relation:
 \[T(n) = T(n/2) + c_1 n + c_2, \quad T(1) = c_0 \]

- Plug and chug:
 \[
 T(1) = c_0 \\
 T(2) = T(1) + 2c_1 + c_2 = c_0 + 2c_1 + c_2 \\
 T(4) = T(2) + 4c_1 + c_2 = c_0 + (4 + 2)c_1 + 2c_2 \\
 T(8) = T(4) + 8c_1 + c_2 = c_0 + (8 + 4 + 2)c_1 + 3c_2 \\
 T(n) = c_0 + \left(n + \frac{n}{2} + \frac{n}{4} + \cdots + 4 + 2 \right) c_1 + (\log n) c_2
 \]

What is \(T(n) \)?

The linear function converges to \(2n \) as \(n \) gets large.
Binary Search Analysis

- $T(n) \text{ is } O(n + \log n)$
- As bad as scanning array…
 - But in our example it was $O(\log n)$!
What happened?
Subtlety in Binary Search!

- In our implementation we copied half the array at each step, this cost us $O(n)$.
- so runtime went back up to $O(n)$.

Common pitfall when implementing efficient algorithms
What should we do?
In-Place Binary Search

- We should keep reusing the original array
 - no copying of elements!
- We should implement it “in-place”
In-Place Binary Search Pseudo-Code

function \texttt{binarysearch}(A, lo, hi, x):
 if lo >= hi:
 return A[lo] == x

 mid = (lo + hi) / 2

 if x == A[mid]:
 return true
 if x > A[mid]:
 return \texttt{binarysearch}(A, mid+1, hi, x)
 if x < A[mid]:
 return \texttt{binarysearch}(A, lo, mid-1, x)
In-Place Binary Search
In-Place Binary Search

4 min

Activity #2
In-Place Binary Search

3 min

Activity #2
In-Place Binary Search

Activity #2
In-Place Binary Search

Activity #2

0 min
In-Place Binary Search

- Does $O(1)$ ops at each level of recursion
- Recurrence is now

$$T(n) = T(n/2) + c_1, \text{ with } T(1) = c_0$$

- Plug & Chug:

 $$T(1) = c_0$$
 $$T(2) = T(1) + c_1 = c_0 + c_1$$
 $$T(4) = T(2) + c_1 = c_0 + 2c_1$$
 $$T(8) = T(4) + c_1 = c_0 + 3c_1$$

 $$T(n) = c_0 + (\log n) \cdot c_1$$
In-Place Binary Search

- So in-place binary search is
 - $O(\log n)$!
Iterative Binary Search

- Recursive algorithms can be implemented iteratively

```python
function binarysearch(A, x):
    lo = 0
    hi = A.size - 1
    while lo < hi:
        mid = (lo + hi) / 2
        if A[mid] == x:
            return true
        if A[mid] < x:
            lo = mid + 1
        if A[mid] > x:
            hi = mid - 1
    return [lo] == x
```