Sets, Dictionaries & Hash Tables

CS16: Introduction to Data Structures & Algorithms
Spring 2019
Q: how would you build a (basic) search engine?
What’s so Hard about Search Engines?

"The **Google** Search **index** contains **hundreds of billions of webpages** and is well over 100,000,000 gigabytes in **size**."

How Google Search Works | Crawling & Indexing
https://www.google.com › search › crawl...
Search Through Each Page?

- Assume Google indexes $200,000,000,000$ pages
- If we could scan 1 page in 1 microsecond
 - one search would take 55 hours
- How do we improve search time
 - when we have to look through billions of documents?
Outline

- Sets
- Dictionaries
- Hash Tables
- Ex: Search engine
Sets

- Collection of elements that are
 - distinct
 - unordered (unlike lists or arrays)
Set ADT

- **add**(object):
 - adds object to set if not there
- **remove**(object):
 - removes object from set if there
- **contains**(object):
 - checks if object is in set
- **size**():
 - returns number of objects in set
- **isEmpty**():
 - returns TRUE if set is empty; FALSE otherwise
- **enumerate**():
 - returns list of objects in set (in arbitrary order)
Set Data Structure

- How can we implement a Set?
- Expandable array
 - add (to end): $O(1)$
 - contains (scan): $O(n)$
 - remove (find & compress): $O(n)$
- Can we do better?
Dictionary

- Collection of key/value pairs
 - distinct keys
 - unordered
- Supports value lookup by key
- AKA a **map**
 - maps keys to values
- ex: name → address; word → definition
Dictionary ADT

- **add**(key, value):
 - adds key/value pair to dict.

- **get**(key):
 - returns value mapped to key

- **remove**(key):
 - removes key/value pair

- **size**():
 - returns number key/value pairs

- **isEmpty**():
 - returns TRUE if dict. is empty; FALSE otherwise
Q: how can we implement a dictionary?
Array-based Dictionary

- Use an expandable array A
- $\textbf{add}(k, v)$:
 - store (k, v) at first empty cell of A
 - takes $O(1)$
- $\textbf{get}(k)$:
 - scan A to find value with key $\text{key}=k$
 - takes $O(n)$
- $\textbf{remove}(k)$:
 - scan A to find pair with $\text{key}=k$ & remove
 - takes $O(n)$

Q: Can we do better?
Yes! with a Hash Table

- What is a hash table?
 - a Dictionary data structure composed of
 - an array A and
 - a “hash” function $h: X \rightarrow Y$
Yes! with a Hash Table

- What is a “hash” function?
 - a function \(h : X \rightarrow Y \) that is “shrinking”, i.e., that maps elements from an input space \(X \) to a smaller output space \(Y \)
 - such that the elements of \(X \) are “well-spread” over \(Y \)
Yes! with a Hash Table

- Shrinking

- Well-spread over \mathbf{Y}
Building a Dictionary w/ a Hash Table

- Choose a hash function \(h : X \rightarrow Y \) with
 - \(X \) = universe of keys and \(Y \) = indices of array

- \textit{add}(k, v): set \(A[h(k)] = v \) \(\text{— } O(1) \)

- \textit{get}(k): return \(v = A[h(k)] \) \(\text{— } O(1) \)

- \textit{remove}(k): delete \(A[h(k)] \) \(\text{— } O(1) \)

- \(\textbf{Q: What's the problem with this?} \)
 - since \(|Y| < |X| \) some keys in \(X \) will be hashed to same location!
 - so some values will be overwritten
 - this is called a \textbf{collision}
Overcoming Collisions

- Hash Table with Chaining
 - store *multiple* values at each array location
 - each array cell will store a "bucket" of pairs
 - can implement bucket as a list or expandable array or ...

FYI: there are many other approaches e.g., linear probing, quadratic probing, cuckoo hashing, ...
Hash Table

table: array
h: hash function

function add(k, v):
 index = h(k)
 table[index].append(k, v)

function get(k):
 index = h(k)
 for (key, val) in table[index]:
 if key = k:
 return val
 error("key not found")

O(1) if hash is O(1)
depends on bucket size
Let's do an example!

- build a dictionary that maps Banner IDs to Names
- Let's use a Hash Table with Chaining!

We’ll use the following hash function

- $h(banner_id) = banner_id \mod 7$
Hash Table — Add

keys: banner IDs
values: names

h(key) = key % 7

- 00943855 Kaila Jeter
- 00745911 Chantal Toupin
- 00238494 Alejandro Molina
- 00472885 David Laidlaw
- 00231924 Lauren Ho
- 00745911 Chantal Toupin
- 00472885 David Laidlaw
- 00943855 Kaila Jeter
- 00238494 Alejandro Molina
- 00745911 Chantal Toupin
- 00543163 Surbhi Madan
Hash Table — Get

keys: banner IDs
values: names

h(key) = key % 7

What is the worst-case run time of Get?
Hash Table

- What is the worst-case runtime of Get?
 - \(\approx \) size of largest bucket

- What is the size of largest bucket?
 - assume we have \(n \) students and a table of size \(m \)
 - if \(h \) “spreads” keys roughly evenly then
 - each bucket has size \(\approx \frac{n}{m} \)
 - ex: if \(n=150 \) and \(m=7 \) each buckets has size \(\approx \frac{150}{7} = 21 \)

- What is the size of largest bucket asymptotically?
 - assume \(m \) is a constant (i.e., it does not grow as a function of \(n \))
 - each bucket has size \(\approx \frac{n}{m} = \frac{n}{c} = O(n) \) 😞
Q: Can we do better than $O(n)$?
Beating $O(n)$ — Idea #1

- **Idea:** use larger table
- Banner IDs have 8 digits so max ID is $99,999,999$
- Use table of size $m=100,000,000$
 - w/ hash function $h(key)=key$
- Are there any collisions in this case?
 - no collisions because every pair gets its own cell
 - What is run time of Get?
 - $O(1)$ since we don't need to scan buckets
- What is the problem with this approach?
 - what if we only store 150 students? we're wasting $99,999,850$ cells
Beating $O(n)$ — Idea #2

- **Idea**: use table of size $m=n$

- If we know we will only store $n=150$ students
 - use table of size $m=150$
 - w/ hash function $h(key) = key \mod 150$
 - no waste of space!
 - if h “spreads” keys roughly evenly then each bucket has size
 - $\approx n/m = 150/150 = 1 = O(1)$
Banner ID Hashing

Form groups of 10

Activity #1

5 min
Banner ID Hashing

Activity #1

5 min
Banner ID Hashing

Activity #1

4 min
Banner ID Hashing

Activity #1

3 min
Banner ID Hashing

Activity #1

2 min
Banner ID Hashing

Activity #1

1 min
Banner ID Hashing

Activity #1
Beating $O(n)$ — Idea #2

- Idea #2 relied on an assumption:
 - *if* h “spreads” keys roughly evenly then each bucket has size
 - $\approx \frac{n}{m} = \frac{150}{150} = 1 = O(1)$

- Will h spread banner IDs evenly?
 - it depends on the banner IDs…
 - if banner IDs are chosen randomly then Yes
 - But what if next year all banner IDs are multiples of 150?
 - Then *all* banner IDs will map to 0!
 - So there will be a bucket with size 150 (all others will have size 0)
 - so worst-case runtime of Get will be $O(n)$
Since keys are not necessarily random, we make the hash function random
Universal Hash Functions

- Special “families” of hash functions
 - $\text{UHF} = \{h_1, h_2, \ldots, h_q\}$
 - designed so that if we pick a function from the family at random and use it on a set of keys, then the function will “spread” the keys roughly evenly (with high probability)
Example of Universal Hash Functions

- Setup to store \(n \) key/value pairs
 - choose prime \(p \) larger than \(n \)
 - choose 4 numbers \(a_1, a_2, a_3, a_4 \) at random between 0 and \(p-1 \)
- Hashing a key \(k \)
 - break \(k \) into 4 parts
 - \(k_1, k_2, k_3, k_4 \)
 - output \(h(k) = \sum_{i=1}^{4} a_i \cdot k_i \mod p \)

- Setup to store 150 students
 - choose \(p=151 \)
 - choose \(a_1=12, a_2=43, a_3=105, a_4=83 \)
 - Hashing a key \(k=00238918 \)
 - break \(k \) into \(k_1=00, k_2=23, k_3=89, k_4=18 \)
 - output \(h(00238918) = 50 \)
Hash Table with UHFs

- Hash table + universal hash functions
 - *Worst-case* runtime of Get is \(O(n) \)
 - But UHFs guarantee that worst-case happens very rarely
 - We should expect to see a Get runtime that is \(O(1) \)

- What do we mean by expect?
 - remember that with UHFs we picked one function from family at random
 - in example we picked the values \((a_1, a_2, a_3, a_4) \) at random
 - for some functions in family, keys will be well-spread & for others keys may be clustered
 - but if we were to compute the runtime of Hash Table with \(h \) a million times, where each time we sample a hash function at random from the family…
 - …then the average of those runtimes would be \(O(1) \)
 - This is called “expected running time”
Why does Universal Hashing Work?

- Why does it result in expected $O(1)$ Gets?
 - see Chapter 1.5.2 in Dasgupta et al.
Proof of Universal Hashing
Inverses

- What is the inverse of a fraction \(\frac{x}{y} \)?
 - \(\frac{y}{x} \) because \(\left(\frac{x}{y} \right) \left(\frac{y}{x} \right) = 1 \)
 - inverse is whatever we need to multiply it by to get 1

- What is the inverse of an int \(x \) (not 1)?
 - \(\frac{1}{x} \) because \((x) \left(\frac{1}{x} \right) = 1 \)

- What is the “integer” inverse of an int \(x \) (not 1)?
 - there is none...
 - you can’t multiply an int w/ another int to get 1 (unless 1)
Modular Arithmetic

- If working modulo some number
 - Integers can have integer inverses!

- Ex: let’s work \(\text{mod } 7 \)
 - Inverse of \(2 \mod 7 \) is \(4 \) because \(2 \times 4 \mod 7 = 1 \)
 - Inverse of \(5 \mod 7 \) is \(3 \) because \(5 \times 3 \mod 7 = 1 \)

- Is this always true?
 - Ex: does \(2 \) have an inverse \(\text{mod } 4 \)?
 - \(2 \times 0 \mod 4 = 0; 2 \times 1 \mod 4 = 2 \)
 - \(2 \times 2 \mod 4 = 0; 2 \times 3 \mod 4 = 2 \)
 - No!

- But it is true when we work modulo a prime number
 - Mod a prime, every number except 0 has a unique inverse
Analysis

- Prime p is the size of array
- x_1, x_2, x_3, x_4 are a banner ID in chunks
- y_1, y_2, y_3, y_4 are another banner ID in chunks
- If IDs are different, at least 1 of the chunks are diff
- Let’s assume (wlog) it is the last one so
 - $x_4 \neq y_4$
- What is the probability that
 - $h(x_1, x_2, x_3, x_4) = h(y_1, y_2, y_3, y_4)$
Analysis

- What is the probability that

 - \(h(x_1, x_2, x_3, x_4) = h(y_1, y_2, y_3, y_4) \)

- Step #1:

 - find equivalent formulation of event

 - that makes the randomness explicit

 - what is the randomness here?

- Step #2:

 - what is probability of equivalent formulation?
Step 1: Equivalent Formulation

\[h(x_1, x_2, x_3, x_4) = h(y_1, y_2, y_3, y_4) \]

by definition

\[a_1x_1 + \cdots + a_4x_4 \equiv a_1y_1 + \cdots + a_4y_4 \pmod{p} \]

move things

\[a_4x_4 - a_4y_4 \equiv (a_1y_1 + a_2y_2 + a_3y_3) - (a_1x_1 + a_2x_2 + a_3x_3) \pmod{p} \]

just some number; let’s call it c

\[a_4 \equiv c \cdot (x_4 - y_4)^{-1} \pmod{p} \]
Step 2: Probability of Equiv. Formulation

- So hashes are equal when
 \[a_4 \equiv c \cdot (x_4 - y_4)^{-1} \pmod{p} \]
- But
 - \(x_4 \) and \(y_4 \) are different so \(x_4 - y_4 \neq 0 \)
 - and \(p \) is prime
 - so \((x_4 - y_4) \) has unique inverse mod \(p \)
- So \(c (x_4 - y_4)^{-1} \) can only take on one value
 - therefore \(a_4 \) can only take on one value
- What is the probability \(a_4 \) takes on that value?
 - \(a_4 \) is randomly chosen from \(p \) possible values so probability is \(1/p \)
Putting it all Together

- Prob. that some ID will collide w/ another ID
 - \(\frac{1}{p} = \frac{1}{151} \)
- For some ID,
 - expected # of collisions w/ all other IDs is
 - \(\frac{149}{151} = 0.986... \)
- Expected size of an ID's bucket is
 - \(1 + 0.986... = 1.986... = O(1) \)
End of Universal Hashing Proof
Summary

- Array-based Dictionaries
 - Add is \(\text{worst-case } O(n) \)
 - Get is \(\text{worst-case } O(n) \)

- Hash Table-based Dictionaries (with UHFs)
 - Add is
 - \(\text{worst-case } O(n) \) but \text{expected } O(1) \)
 - Get is
 - \(\text{worst-case } O(n) \) but \text{expected } O(1) \text{ time}
Q: what can we build from dictionaries?
Sets from Hash Tables

- We can implement sets with a hash table
- Sometimes called a Hash Set

```python
function add(object):
    index = h(object)
    table[index].append(object)

function contains(object):
    index = h(object)
    for elt in table[index]:
        if elt == object:
            return true
    return false
```
A (Basic) Search Engine

- Build a dictionary that maps keywords to URLs
 - takes $O(n)$ time
- Query dictionary on keyword to retrieve URLs
 - takes expected $O(1)$
- In context of search engines
 - the dictionary is often called an Index
A (Basic) Search Engine

- For each keyword word with a list of relevant URLs url₁,...,urlₘ
 - store the pairs (word|₁, url₁),…,(word|ₘ, urlₘ) in a dict Index
 - where “|” is string concatenation
 - Store the pair (word, m) in an auxiliary dictionary Counts

- To search for a keyword Brown
 - retrieve the count for Brown by querying Count.get(Brown)
 - to recover URLs, query Index on keys Brown|₁,...,Brown|ₘ
 - Index.get(word|₁),…,Index.get(word|ₘ)
function build_index(page_list):
 index = dict()
 counts = dict()
 for page in page_list:
 for word in page:
 try:
 count = counts.get(word)
 except KeyError:
 counts.put(word, 0)
 count = counts.get(word)
 counts.put(word, counts[word] + 1)
 key = word + str(counts.get(word))
 index.put(key, page.url)
 return index

- build_index is $O(nm)$ time
 - where n is number of pages and m is maximum number of words per page
Search Index

```python
def search_index(index, word):
    output_list = list()
    count = 1
    while True:
        try:
            url = index.get(word + str(count))
            count = count + 1
        except KeyError:
            break
        output_list.append(url)
    return output_list
```

- If dictionary is implemented with hash table
 - `search_index` is expected $O(1)$ time
 - fast no matter how many pages and words
A (Basic) Search Engine

- What’s missing from our “search engine”?
 - No ranking
 - But we’ll learn about that later in the course
Dictionary vs. Hash Table

- A dictionary (or map) is an abstract data type
 - can be implemented using many ≠ data structures
- A hash table is a dictionary data structure
 - one particular way to implement a dictionary
HashMap vs. HashSet

- Java HashMaps and HashSets
- HashMap
 - Hash table implementation of a dictionary
- HashSet
 - Hash table implementation of a set