Sets, Dictionaries & Hash Tables

CS16: Introduction to Data Structures & Algorithms
Seny Kamara - Spring 2018
Outline

- Sets
- Dictionaries
- Hash Tables
- Ex: Jumble
Sets

- Collection of elements that are
 - distinct
 - unordered (unlike lists or arrays)
Set ADT

- **add**(object):
 - adds object to set if not there
- **remove**(object):
 - removes object from set if there
- **boolean contains**(object):
 - checks if object is in set
- **int size()**:
 - returns number of objects in set
- **boolean isEmpty()**:
 - returns TRUE if set is empty; FALSE otherwise
- **list enumerate()**:
 - returns list of objects in set (in arbitrary order)
Set Data Structure

- How can we implement a Set?
- Expandable array
 - add (to end): $O(1)$
 - contains (scan): $O(n)$
 - remove (find & compress): $O(n)$
- Can we do better?
Dictionary

- Collection of key/value pairs
 - distinct keys
 - unordered
- Supports value lookup by key
- AKA a **map**
 - maps keys to values
- ex: name → address; word → definition
Dictionary ADT

- add(key, value):
 - adds key/value pair to dict.

- object get(key):
 - returns value mapped to key

- remove(key):
 - removes key/value pair

- int size():
 - returns number key/value pairs

- boolean isEmpty():
 - returns TRUE if dict. is empty; FALSE otherwise
Dictionary Data Structure

‣ How can we implement a Dictionary?
‣ Expandable array
 ‣ add (to end): $O(1)$
 ‣ contains (scan): $O(n)$
 ‣ remove (find & compress): $O(n)$
‣ Can we do better?
Hash Table

- Dictionary data structure
- Built with
 - array
 - hash function: function that mixes and shrinks

![Diagram of hash table with input space and output space](image-url)
Idea

- Choose hash function \(h: X \rightarrow Y \) with
 - input space \(X \): universe of keys
 - output space \(Y \): array indices
- Store `value` at location \(h(key) \) of array
- Problem
 - \(h \) can map multiple values to same index/location
 - if \(Y < X \), collisions will happen!
 - values will be overwritten
Idea

› Possible solution
 › store multiple values at each array location
 › called a bucket: list, expandable array, …
 › This solution is called Chaining

› Other possible solutions
 › linear probing, quadratic probing
 › …
Hash Table

```
function add(key, value):
    index = h(key)
    table[index].append(key, value)

function get(key):
    index = h(key)
    for (k, v) in table[index]:
        if k = key:
            return v
    error("key not found")
```

table: array
h: hash function

$O(1)$ if hash is $O(1)$
depends on bucket size
Hash Table — Add

Keys: Banner IDs

\[h(key) = key \mod 7 \]

- B00943855
 - Kaila Jeter
- B00238494
 - Alejandro Molina
- B00472885
 - David Laidlaw
- B00231924
 - Lauren Ho

Array of buckets w/ key/value pairs

- B00472885
 - David Laidlaw
- B00231924
 - Lauren Ho
- B00239625
 - Sophie Saskin
- B00943855
 - Kaila Jeter
- B00238494
 - Alejandro Molina
- B00745911
 - Chantal Toupin
- B00543163
 - Surbhi Madan
What is the worst-case run time of Get?
Hash Table

- Running time of Get
 - approximately **size of largest bucket**
 - \(n \) students, table of size \(m \)
 - **if** keys get mapped randomly:
 - each bucket has size \(O(n/m) = O(n) \)

- Example:
 - **150** students, table of size **7**
 - **if** IDs get mapped randomly:
 - each bucket has size **150 / 7**
Q: Can we do better than $O(n)$?
Beating $O(n)$ — Idea #1

- **Idea:** use larger table
- Banner IDs have 8 digits so max ID is $99,999,999$
- Use table of size $100,000,000$
- With hash function $h(key) = key$
 - are there any collisions?
 - no collisions! every pair gets its own array cell
 - What is run time of Get?
 - $O(1)$
- What if we only store **150** students?
Beating O(n) — Idea #2

- **Idea:** use table of exact size
- If we know we will store 150 students
 - use table of size 150
 - with hash function \(h(\text{key}) = \text{key} \mod 150 \)
 - works if keys/IDs are completely random
- What if keys/IDs are not random?
 - what if next year all banner IDs are multiples of 150?
 - all IDs would map to cell 0
Since keys are not necessarily random, we make the hash function random
Banner ID Hashing

Form groups of 10

Activity #1

5 min
Banner ID Hashing

Activity #1
Banner ID Hashing

Activity #1

4 min
Banner ID Hashing

Activity #1

3 min
Banner ID Hashing

Activity #1

2 min
Banner ID Hashing

Activity #1

1 min
Banner ID Hashing

Activity #1
Universal Hash Function

- Setup:
 - choose **prime** p larger than expected capacity
 - choose 4 numbers a_1, a_2, a_3, a_4 **at random** in $[0, p-1]
 - Hash(key):
 - break key into 4 parts
 - k_1, k_2, k_3, k_4
 - $h(key) = \sum_{i=1}^{4} a_i \cdot k_i \mod 151$

- Setup:
 - $p=151$
 - $a_1=12, a_2=43, a_3=105, a_4=83$
 - Hash(B00238918)
 - $k_1=00, k_2=23, k_3=89, k_4=18$
 - $h(B00238918) = 50$
Hash Table

- Hash table + universal hash function
 - Get is $O(1)$ expected time

What is expected time?

- remember: UHF setup picks a_1, a_2, a_3, a_4, at random
- for some values h will do well (i.e., keys are spread)
- for others it might not (i.e., keys are clustered)
- expected time is average time over a_1, a_2, a_3, a_4
- measure time on all a_1, a_2, a_3, a_4 and take average
Hash Table

- Why does universal hashing give us $O(1)$ Gets?
 - see Chapter 1.5.2 in Dasgupta et al.
Proof of Universal Hashing
Inverses

- What is the inverse of a fraction x/y?
 - y/x because $(x/y)(y/x) = 1$
 - inverse is whatever we need to multiply it by to get 1

- What is the inverse of an int x (not 1)?
 - $1/x$ because $(x)(1/x) = 1$

- What is the “integer” inverse of an int x (not 1)?
 - there is none…
 - you can’t multiply an int w/ another int to get 1 (unless 1)
Modular Arithmetic

- If working modulo some number
 - Integers can have integer inverses!
- ex: let’s work \textbf{mod 7}
 - inverse of \(2\mod 7\) is 4 because \(2 \times 4 \mod 7 = 1\)
 - inverse of \(5\mod 7\) is 3 because \(5 \times 3 \mod 7 = 1\)
- Is this always true?
 - ex: does 2 have an inverse \textbf{mod 4}?
 - \(2 \times 0 \mod 4 = 0; 2 \times 1 \mod 4 = 2\)
 - \(2 \times 2 \mod 4 = 0; 2 \times 3 \mod 4 = 2\)
 - No!
- But it is true when we work modulo a prime number
 - mod a prime, every number except 0 has a unique inverse
Analysis

- Prime p is the size of array
- x_1, x_2, x_3, x_4 are a banner ID in chunks
- y_1, y_2, y_3, y_4 are another banner ID in chunks
- If IDs are different, at least 1 of the chunks are diff
- Let’s assume (wlog) it is the last one so
 - $x_4 \neq y_4$
- What is the probability that
 - $h(x_1, x_2, x_3, x_4) = h(y_1, y_2, y_3, y_4)$
What is the probability that
\[h(x_1, x_2, x_3, x_4) = h(y_1, y_2, y_3, y_4) \]

Step #1:
- find equivalent formulation of event
- that makes the randomness explicit
- what is the randomness here?

Step #2:
- what is probability of equivalent formulation?
Step 1: Equivalent Formulation

\[h(x_1, x_2, x_3, x_4) = h(y_1, y_2, y_3, y_4) \]

by definition

\[a_1 x_1 + \cdots + a_4 x_4 \equiv a_1 y_1 + \cdots + a_4 y_4 \pmod{p} \]

move things

\[a_4 x_4 - a_4 y_4 \equiv (a_1 y_1 + a_2 y_2 + a_3 y_3) - (a_1 x_1 + a_2 x_2 + a_3 x_3) \pmod{p} \]

different

just some number; let’s call it c

\[a_4 \cdot (x_4 - y_4) \equiv c \pmod{p} \]

\[a_4 \equiv c \cdot (x_4 - y_4)^{-1} \pmod{p} \]
Step 2: Probability of Equiv. Formulation

- So hashes are equal when
 \[a_4 \equiv c \cdot (x_4 - y_4)^{-1} \pmod{p} \]
- But
 - \(x_4 \) and \(y_4 \) are different so \(x_4 - y_4 \neq 0 \)
 - and \(p \) is prime
 - so \((x_4 - y_4) \) has unique inverse mod \(p \)
 - So \(c(x_4 - y_4)^{-1} \) can only take on one value
 - therefore \(a_4 \) can only take on one value
- What is the probability \(a_4 \) takes on that value?
 - \(a_4 \) is randomly chosen from \(p \) possible values so probability is \(\frac{1}{p} \)
Putting it all Together

- Prob. that some ID will collide w/ another ID
 - $\frac{1}{p} = \frac{1}{151}$
- For some ID,
 - expected # of collisions w/ all other IDs is
 - $\frac{149}{151} = 0.986...$
- Expected size of an ID’s bucket is
 - $1 + 0.986... = 1.986... = O(1)$
End of Universal Hashing Proof
Sets from Hash Tables

- We can implement sets with a hash table
- Sometimes called a Hash Set

```python
function add(object):
    index = h(object)
    table[index].append(object)

function contains(object):
    index = h(object)
    for elt in table[index]:
        if elt == object:
            return true
    return false
```
Hash Map vs. Hash Set

- **Hash Map**
 - Hash table implementation of dictionary
 - Maps keys to values
 - No ordering

- **Hash Set**
 - Hash table implementation of set
 - No keys (like hash map with keys same as values)
 - No ordering
Example: JUMBLE

- Jumble puzzle
 - given a clue and set of letters,
 - rearrange letters into word that fits clue
- Leah is making a Jumble puzzle
 - needs words for which all permutations are invalid words
 - that way there is only 1 possible solution to puzzle
- Algorithm
 - input: set of all 5-letter english words
 - output: all 5-letter words whose permutations are non-english
JUMBLE Algorithm

- Naive approach
 - For each word,
 - For each permutation of word
 - check if permutation is an english word
 - There are 5! permutations of a word…
Better approach
- Sort each English word alphabetically
- For each English word store
 - key = sorted word and value = word
 - in hash table
- Words with no valid permutations
 - are the words in single-element buckets
function jumble(words):
 output = []
 permutations = dictionary()
 for each word in words:
 sortedKey = sort the letters of “word” alphabetically
 permList = permutations.get(sortedKey) or [] // [] if empty
 permList.append(word)
 permutations.add(sortedKey, permList)
 for each word in words:
 sortedKey = sort the letters of word alphabetically
 if permutations.get(sortedKey).length == 1:
 output.append(word)
 return output