Dynamic Programming

CS16: Introduction to Data Structures & Algorithms
Spring 2020
Outline

- Dynamic Programming
- Examples
 - Fibonacci
 - Seamcarve
What is Dynamic Programming?

- Algorithm design paradigm/framework
 - Design efficient algorithms for optimization problems
- Optimization problems
 - “find the best solution to problem X”
 - “what is the shortest path between u and v in G”
 - “what is the minimum spanning tree in G”
- Can also be used for non-optimization problems
When is Dynamic Programming Applicable?

- **Condition #1**: sub-problems
 - The problem can be solved recursively
 - Can be solved by solving sub-problems

- **Condition #2**: overlapping sub-problems
 - Same sub-problems need to be solved many times

- **Core idea**
 - Solve each sub-problem once and store the solution
 - Use stored solution when you need to solve sub-problem again
Steps to Solving a Problem w/ DP

- What are the sub-problems?
- What is the “magic” step?
 - Given solutions to sub-problems…
 - …how do I combine them to get solution to the problem?
- In which order should I solve sub-problems?
 - so that solutions to sub-problems are available when I need them
- Design iterative algorithm
 - that solves sub-problems in right order and stores their solution
Fibonacci
Fibonacci

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

$F(n) = F(n - 1) + F(n - 2)$

base cases:

$F(0) = 0$ & $F(1) = 1$
Fibonacci (Recursive)

- Defined by the recursive relation
 - \(F_0 = 0, \ F_1 = 1 \)
 - \(F_n = F_{n-1} + F_{n-2} \)
- We can implement this recursively

```python
function fib(n):
    if n = 0:
        return 0
    if n = 1:
        return 1
    return fib(n-1) + fib(n-2)
```
Fibonacci (Recursive)

Big-O runtime of recursive \texttt{fib} function?
Fibonacci (Recursive)

Big-O runtime of recursive `fib` function?
Fibonacci (Recursive)

Big-O runtime of recursive \texttt{fib} function?

Activity #1
Fibonacci (Recursive)

```
function fib(n):
    if n = 0:
        return 0
    if n = 1:
        return 1
    return fib(n-1) + fib(n-2)
```

- How many times does `fib` get called for `fib(4)`?
 - 8 times
- At each level it makes twice as many recursive calls as last
 - For `fib(n)` it makes approximately 2^n recursive calls
 - Algorithm is $O(2^n)$
Fibonacci (Recursive)

- How many times does $\text{fib}(1)$ get computed?
- Instead of recomputing Fibonacci numbers over and over again
- Compute them once and store them for later

```python
function fib(n):
    if n = 0:
        return 0
    if n = 1:
        return 1
    return fib(n-1) + fib(n-2)
```
Fibonacci (Dynamic Programming)

- Given \(n \) compute
 - \(\text{Fib}(n) = \text{Fib}(n-1) + \text{Fib}(n-2) \)
 - with base cases \(\text{Fib}(0) = 0 \) and \(\text{Fib}(1) = 1 \)

- What are the **sub-problems**?
 - \(\text{Fib}(n-1), \text{Fib}(n-2), \ldots, \text{Fib}(1), \text{Fib}(0) \)

- What is the **magic** step?
 - \(\text{Fib}(n) = \text{Fib}(n-1) + \text{Fib}(n-2) \)

Magic step is usually not provided!!
Fibonacci (Dynamic Programming)

- In which order should I solve sub-problems?
 - Fib(0), Fib(1), …, Fib(n-1), Fib(n)
Fibonacci (Dynamic Programming)

- Design iterative **algorithm**

```python
function Fib(n):
    fibs = []
    fibs[0] = 0
    fibs[1] = 1
    for i from 2 to n:
        fibs[i] = fibs[i-1] + fibs[i-2]
    return fibs[n]
```
Fibonacci (Dynamic Programming)

- What’s the runtime of `dynamicFib()`?
 - Calculates Fibonacci numbers from 0 to n
 - Performs $O(1)$ ops for each one
 - Runtime is $O(n)$
- We reduced runtime of algorithm
 - From exponential to linear
 - with dynamic programming!
Seams
Finding Low Importance Seams

- **Idea:** remove *seams* not columns
 - (vertical) seam is a path from top to bottom
 - that moves left or right by at most one pixel per row
Finding Low Importance Seams

- How many seams in a $c \times r$ image?
 - At each row the seam can go Left, Right or Down
 - It chooses 1 out of 3 dirs at all but last row r
 - So about 3^{r-1} seams from some starting pixel
 - There are c starting pixels so total number of seams is about $c \times 3^{r-1}$

- For square $n \times n$ image
 - there are about $n \times 3^{n-1}$ possible seams
Finding Low Importance Seams

- Brute force algorithm
 - Try every possible seam & find least important one

- What is running time of brute force algorithm?
 - If image is $n \times n$ brute force takes about $n^3 n^{-1}$
 - So brute force is $\Omega(2^n)$ (i.e., exponential)
Seamcarve

- What is the runtime of Seamcarve?
- The algorithm
 - Iterate over all pixels from bottom to top
 - Populate `costs` and `dirs` arrays
 - Create seam by choosing minimum value in top row and tracing downward
- How many operations per pixel?
 - A constant number of operations per pixel (4)
- Constant number of operations per pixel means algorithm is linear
 - $O(n)$ where n is number of pixels
- Also could have counted # of nested loops in pseudocode…
Seamcarve

- How can we possibly go from
 - exponential running time with brute force
 - to linear running time with Seamcarve?
- What is the secret to this magic trick?

Dynamic Programming!
Designing Seamcarve

- What are the subproblems?
 - lowest cost seam (LCS) starting at is
 \[
 \min(\text{LCS}(\text{), LCS(), LCS()})
 \]

- Are they overlapping?
 - Yes!
 - ex: LCS() is subproblem of LCS() and LCS()
Designing Seamcarve

- What is the magic step?

\[\text{min}(\text{LCS}(\text{green}), \text{LCS}(\text{purple}), \text{LCS}(\text{yellow})) \]

- Which topological order should I use?
 - to solve LCS problem at cell \((i,j)\)
 - we need to have solved problem at cells below
Designing Seamcarve

- **Algorithm**

 - compute cost of LCS for each cell going bottom up

 - store cost of LCS in an auxiliary 2D array...

 - ...so we can reuse them

\[
\text{Cost}(\square) = \text{Val}(\square) + \min(\text{Cost}(\square), \text{Cost}(\square), \text{Cost}(\square))
\]
Designing Seamcarve

- **Problem**
 - Costs array only gives us cost of LCS at cell
 - We need the seam. What happened?
 - We used
 \[
 \text{Cost}(x) = \text{Val}(x) + \min(\text{Cost}(y), \text{Cost}(z), \text{Cost}(w))
 \]
 - But recall that at “seam level” we had
 \[
 \text{LCS}(x) = \begin{cases} x & \text{if } x \text{ is a match} \\ \min(\text{LCS}(y), \text{LCS}(z), \text{LCS}(w)) & \text{otherwise} \end{cases}
 \]
Designing Seamcarve

- It’s OK!
 - We can keep track of minimum LCS
 - at each step in auxiliary structure Dirs