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What is Dynamic Programming?
‣ Algorithm design paradigm/framework
‣ Design efficient algorithms for optimization problems

‣ Optimization problems
‣ “find the best solution to problem X”

‣ “what is the shortest path between u and v in G”

‣ “what is the minimum spanning tree in G”

‣ Can also be used for non-optimization problems
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When is Dynamic Programming Applicable?

‣ Condition #1: sub-problems

‣ The problem can be solved recursively

‣ Can be solved by solving sub-problems

‣ Condition #2: overlapping sub-problems

‣ Same sub-problems need to be solved many times

‣ Core idea

‣ solve each sub-problem once and store the solution

‣ use stored solution when you need to solve sub-problem again
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Steps to Solving a Problem w/ DP
‣ What are the sub-problems?

‣ What is the “magic” step?

‣ Given solutions to sub-problems…

‣ …how do I combine them to get solution to the problem?

‣ In which order should I solve sub-problems?

‣ so that solutions to sub-problems are available when I need them

‣ Design iterative algorithm 

‣ that solves sub-problems in right order and stores their solution
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Fibonacci



Fibonacci

base cases:

F (n) = F (n� 1) + F (n� 2)

0,1,1,2,3,5,8,13,21,34,…

F (0) = 0 & F (1) = 1
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Fibonacci (Recursive)
‣ Defined by the recursive relation

‣ F0 = 0, F1 = 1

‣ Fn = Fn-1+Fn-2

‣ We can implement this recursively
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function fib(n):
   if n = 0:
      return 0
   if n = 1:
      return 1
   return fib(n-1) + fib(n-2)



Fibonacci (Recursive)
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Fibonacci (Recursive)
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Fibonacci (Recursive)

‣ How many times does fib get called for fib(4)?
‣ 8 times

‣ At each level it makes twice as many recursive calls as last
‣ For fib(n) it makes approximately 2n recursive calls
‣ Algorithm is O(2n)
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function fib(n):
   if n = 0:
      return 0
   if n = 1:
      return 1
   return fib(n-1) + fib(n-2)



Fibonacci (Recursive)

‣ How many times does fib(1) get computed?

‣ Instead of recomputing Fibonacci numbers over and over again

‣ Compute them once and store them for later
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function fib(n):
   if n = 0:
      return 0
   if n = 1:
      return 1
   return fib(n-1) + fib(n-2)



Fibonacci (Dynamic Programming)
‣ Given n compute 

‣ Fib(n) = Fib(n-1)+Fib(n-2)
‣ with base cases Fib(0) = 0 and Fib(1) = 1

‣ What are the sub-problems?
‣ Fib(n-1), Fib(n-2), …, Fib(1), Fib(0)

‣ What is the magic step?
‣ Fib(n) = Fib(n-1)+Fib(n-2)
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Magic step is 
usually not
provided!!



Fibonacci (Dynamic Programming)
‣ In which order should I solve sub-problems?

‣ Fib(0), Fib(1), …,Fib(n-1), Fib(n)
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Fibonacci (Dynamic Programming)
‣ Design iterative algorithm
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function Fib(n):
   fibs = []
   fibs[0] = 0
   fibs[1] = 1
   
   for i from 2 to n:
       fibs[i] = fibs[i-1] + fibs[i-2]

   return fibs[n]



Fibonacci (Dynamic Programming)
‣ What’s the runtime of dynamicFib( )?
‣ Calculates Fibonacci numbers from 0 to n

‣ Performs O(1) ops for each one 

‣ Runtime is O(n)

‣ We reduced runtime of algorithm
‣ From exponential to linear 
‣ with dynamic programming!
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Seams



Finding Low Importance Seams

‣ Idea: remove seams not columns
‣ (vertical) seam is a path from top to bottom 
‣ that moves left or right by at most one pixel per row
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Finding Low Importance Seams
‣ How many seams in a c×r image?
‣ At each row the seam can go Left, Right or Down

‣ It chooses 1 out of 3 dirs at all but last row r 

‣ So about 3r-1 seams from some starting pixel

‣ There are c starting pixels so total number of seams is
‣ about c×3r-1

‣ For square nxn image
‣ there are about n3n-1 possible seams
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Finding Low Importance Seams
‣ Brute force algorithm
‣ Try every possible seam & find least important one

‣ What is running time of brute force algorithm?
‣ If image is nxn brute force takes about n3n-1 

‣ So brute force is Ω(2n) (i.e., exponential)
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Seamcarve
‣ What is the runtime of Seamcarve?
‣ The algorithm

‣ Iterate over all pixels from bottom to top 

‣ Populate costs and dirs arrays

‣ Create seam by choosing minimum value in top row and tracing downward

‣ How many operations per pixel?
‣ A constant number of operations per pixel (4)

‣ Constant number of operations per pixel means algorithm is linear 
‣ O(n) where n is number of pixels

‣ Also could have counted # of nested loops in pseudocode…
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Seamcarve
‣ How can we possibly go from
‣ exponential running time with brute force
‣ to linear running time with Seamcarve?
‣ What is the secret to this magic trick?
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Designing Seamcarve
‣ What are the subproblems?
‣ lowest cost seam (LCS) starting at       is 

‣ Are they overlapping?
‣ Yes!

‣ ex: LCS(      ) is subproblem of LCS(      ) and LCS(      )
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min( LCS(      ), LCS(      ), LCS(      ))



Designing Seamcarve
‣ What is the magic step?

‣ Which topological order should I use?
‣ to solve LCS problem at cell (i,j) 
‣ we need to have solved problem at cells below
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min( LCS(      ), LCS(      ), LCS(      ))



Designing Seamcarve
‣ Algorithm
‣ compute cost of LCS for each cell going bottom up
‣ store cost of LCS in an auxiliary 2D array…
‣ …so we can reuse them

26

Cost(     )=Val(     )+min( Cost(     ), Cost(     ), Cost(     ))



Designing Seamcarve
‣ Problem
‣ Costs array only gives us cost of LCS at cell
‣ We need the seam. What happened?
‣ We used 

‣ But recall that at “seam level” we had
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Cost(     )=Val(     )+min( Cost(     ), Cost(     ), Cost(     ))

LCS(     )=         min( LCS(     ), LCS(     ), LCS(     ))



Designing Seamcarve
‣ It’s OK!
‣ We can keep track of minimum LCS 
‣ at each step in auxiliary structure Dirs
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