Dynamic Programming

CST6: Introduction to Data Structures & Algorithms
Spring 2020

Outline

» Dynamic Programming

» Examples

» Fibonacc

» Seamcarve

What I1s Dynamic Programming?

» Algorithm design paradigm/framework

» Design efficient algorithms for optimization problems

» Optimization problems
» “find the best solution to problem X"
» “what Is the shortest path between u and v in G”

» “what Is the minimum spanning tree In G”

» Can also be used for non-optimization problems

When I1s Dynamic Programming Applicable!

» Condition #1: sub-problems

» The problem can be solved recursively

» (Can be solved by solving sub-problems
» Condition #2: overlapping sub-problems

» Same sub-problems need to be solved many times

» Core idea
» solve each sub-problem once and store the solution

» use stored solution when you need to solve sub-problem again

Steps to Solving a Problem w/ DP

v

What are the sub=-problems’

v

What i1s the “magic’’ step?
» Given solutions to sub-problems...

» ...how do | combine them to get solution to the problem!?

v

In which order should | solve sub-problems?

» so that solutions to sub-problems are available when | need them

v

Design iterative algorithm

» that solves sub-problems in right order and stores their solution

Flbonaccl

Flbonaccl

IR, 5,0 ,8,15,21,34,..

F(n)=F(n-1)4+ F(n—2)

F(5)
ey i ey 18\ MG
e -\ base cases:
F(2) F(1) F(l) F©) F(l) F0) g
/\ F0)=0& F(1) =1

FIbonacci (Recursive) m
/\
» Defined by the recursive relation /\) /\

F(2) F(1) F(1) F(0)

» Fo = (), F1. =1 '/ﬁ\\

> Fn = Fn—1+Fn—2 F(1) F(0)

» We can implement this recursively

function fib(n):
if n = O:
return 0

if n = 1:
return 1
return fib(n-1) + f£ib(n-2)

Fibonaccl (Recursive)

Big-O runtime of recursive £1b function!?

ny

Activity #I

Fibonaccl (Recursive)

Big-O runtime of recursive £1b function!?

ny

Activity #I

Fibonaccl (Recursive)

Big-O runtime of recursive £1b function!?

b

Activity #I

Fibonaccl (Recursive)

function fib(n):
if n = 0:
return 0

if n=1:
return 1
return fib(n-1) + fib(n-2)

» How many times does £ib get called for £ib(4)’
» 3 times

» At each level it makes twice as many recursive calls as last
» For £1b(n) it makes approximately 2» recursive calls

» Algorithm is O (2n)

Fibonaccl (Recursive)

function fib(n):
if n = 0:
return 0
if n = 1:

return 1
return fib(n-1) + fib(n-2)

» How many times does £ib (1) get computed!
» Instead of recomputing Fibonacci numbers over and over again

» Compute them once and store them for later

Fibonaccl (Dynamic Programming)

» Given n compute
» Fib(n) = Fib(n-1)+Fb(n-2)
» with base cases FIb(0) = 0 and Fib(1) = 1
» What are the sub=-problems’
» Fib(n-1), Fib(n-2), ..., Fib(1), Fib(0)
» What Is the magic step! Magic step is

+ Fib(n) = Fib(n-1)+Fib(n-2) provided!

2

Fibonaccl (Dynamic Programming)

» In which order should | solve sub-problems?

» Fib(0), Fib(1), ...,Fib(n-1), Fib(n)

e

o & =

@/

Fibonaccl (Dynamic Programming)

» Design iterative algorithm

function Fib(n):
fibs = []
fibs[0] = 0
fibs[1] 1

for i from 2 to n:
fibs[i] = fibs[1-1] + fibs[1-2]

return fibs[n]

Fibonaccl (Dynamic Programming)

» What's the runtime of dynamicFib()/
» Calculates Fibonacci numbers from 0 to n
» Performs O (1) ops for each one
» Runtime 1sO(n)

» We reduced runtime of algorithm

» From exponential to linear

» with dynamic programming!

Seams

Finding Low Importance Seams

e .

» Ildea: remove seams not columns

» (vertical) seam Is a path from top to bottom
» that moves left or right by at most one pixel per row

Finding Low Importance Seams

» How many seams In a CXxr Image!

r~

» At each row the seam can go Left, Right or Down

» [t chooses 1 out of 3 dirs at all but last row r

» S0 about 3r-1 seams from some starting pixel

» [here are ¢ starting pixels so total number of seams s
» about cx3r-1

» FOr sguare nxXn image

» there are about n3n-1 possible seams

20

Finding Low Importance Seams

» Brute force algorithm

» Iry every possible seam & find least important one

» What Is running time of brute force algorithm!?
» [T Image Is nxn brute force takes about n3n-1

» So brute force is Q(2n) (i.e. exponential)

|

Seamcarve

» What is the runtime of Seamcarve!
» The algorithm

» [terate over all pixels from bottom to top

» Populate costs and dirs arrays

» Create seam by choosing minimum value in top row and tracing downward
» How many operations per pixel!

» A constant number of operations per pixel (4)

» Constant number of operations per pixel means algorithm is linear

» O(n) where n is number of pixels

» Also could have counted # of nested loops In pseudocode. ..

L)

Seamcarve

» How can we possibly go from
» exponential running time with brute force
» to linear running time with Seamcarve!

» What Is the secret to this magic trick?

Dynamic

Programming!

Designing Seamcarve =

» VWhat are the subproblems!

» lowest cost seam (LCS) starting at [l 1S

[] " min(LCS(I), LCS(I), LCS([__)

» Are they overlapping!
> Yes!

» ex: LCS() is subproblem of LCS(Jll) and LCS()

ik

Designing Seamcarve

» What Is the magic step?

[] " min(LCS(ID), LCS(ID). LCS(L_)

» Which topological order should | use!

» to solve LCS problem at cell (1, 7)

» we need to have solved problem at cells below

L5

Designing Seamcarve

» Algorithm

» compute cost of LCS for each cell going bo

» store cost of LCS in an auxiliary 2D array...

4

...SO wWe can reuse them

N

Cost(Il)=Val([l) +min(Cost([), Cost([l), Cost(

26

tom up

)

Designing Seamcarve

» Problem

4

4

4

4

Costs array only gives us cost of LCS at cell

We need the seam.What happened!

VWe used

Cost([ll)=Val([ll)+min(Cost(

But recall that at “'seam level” we had

LCS(HD= I H min(LCS(

EES(Il) E@S

LT

), Cost(ll), Cost([]))

)

Designing Seamcarve

» |t's OK

» We can keep track of minimum LCS

» at each step in auxiliary structure Dirs

28

