Recursion & Induction

CS16: Introduction to Algorithms & Data Structures
Spring 2020
Outline

- Recursion
- Recurrence relations
- Plug & chug
- Induction
- Strong vs. weak induction
Scouting

US

RI

NY

CA

IN

Pvd

NP

NYC

Buff.

SF

LA

Ind.

Gary
Recursion

- What is a recursive problem?
 - a problem defined in terms of itself
- What is a recursive function?
 - a function defined in terms of itself
 - example: Factorial, Fibonacci
- At each level, the problem gets easier/smaller
“Something defined in terms of itself”
Recursive Algorithms

- Algorithms that call themselves
 - Call themselves on smaller inputs (sub-problems)
 - Combine the results to find solution to larger input
- Recursive algorithms
 - Can be very easy to describe & implement :-)
 - Can be hard to think about and to analyze :-(
Factorial

iterative: \(n! = \prod_{i=1}^{n} i = n \times (n - 1) \times \cdots \times 1 \)

recursive: \(n! = n \times (n - 1)!, \) with \(1! = 1 \)
Recursive Factorial — Simulation

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call `factorial(3)`
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

- call **factorial(3)**
 - **level #1**: 3\(\neq\) 1 so 3 \(\times\) **factorial(2)**
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

› call `factorial(3)`

› level #1: 3≠1 so 3 × `factorial(2)`

› level #2: 2≠1 so 2 × `factorial(1)`
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

• call `factorial(3)`
 • level #1: 3≠1 so 3 × `factorial(2)`
 • level #2: 2≠1 so 2 × `factorial(1)`
 • level #3: 1==1 so return 1
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

› call factorial(3)

› level #1: 3 ≠ 1 so 3 × factorial(2)

› level #2: 2 ≠ 1 so 2 × 1

› level #3: 1 == 1 so return 1
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

call factorial(3)

 level #1: 3 ≠ 1 so 3 x 2

 level #2: 2 ≠ 1 so 2 x 1

 level #3: 1 == 1 so return 1
Recursive Factorial — Simulation

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- **call** `factorial(3) = 6`
 - `fact(3): 3≠1 so 3 × 2`
 - `level #2: 2≠1 so 2 × 1`
 - `level #3: 1==1 so return 1`
Wait a minute!!

you keep calling factorial but never actually implemented it
def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)
def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)
Recursion & Clones

- At each intersection
 - clone yourself twice and send one Left and one Right
 - wait for clones to report a path to exit (if it exists) and its length
 - pick direction that gets you to exit the fastest
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1
Example: recursive \texttt{array_max}

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

\textit{Activity #1}

2 min
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1

1 min
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1
Example: recursive \texttt{array_max}

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

```
array_max([5,1,9,2], 4) = [9]
max(2, array_max([5,1,9,2], 3) = [9])
max(9, array_max([5,1,9,2], 2) = [5])
max(1, array_max([5,1,9,2], 1) = [5])
```
Running Time of Recursive Algos

- Difficult to analyze :-(
- With iterative algorithms
 - we can count # of ops per loop
- How can we count # ops in a recursive step?
 - We can’t…

```python
def factorial(n):
    out = 1
    for i in range(1, n+1):
        out = i * out
    return out
```

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```
Recurrence Relations

- Functions that express run time recursively

\[T(n) = 2 \cdot T(n - 1) + 10, \quad \text{with} \quad T(1) = 8 \]

- part 1: # of operations in general case
- part 2: # of operations in base case
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

\[T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0 \]

![What about Big-Oh?](image)

- general: constant # ops for comp & max + cost of recursive call
- base: constant # ops for comp and return
Big-O from Recurrence Relation

- Step #1: Plug & Chug
 - algebraic manipulations to guess a Big-O expression
- Step #2: Induction
 - prove that Big-O expression is correct
Example: recursive `array_max`

\[T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0 \]

- general case
- base case
Plug & Chug

\[T(n) = T(n-1) + c_1, \quad \text{with} \quad T(1) = c_0 \]

General case

1. \[T(1) = c_0 \]
2. \[T(2) = c_1 + T(1) = c_1 + c_0 \]
3. \[T(3) = c_1 + T(2) = c_1 + c_1 + c_0 = 2c_1 + c_0 \]
4. \[T(4) = c_1 + T(3) = c_1 + 2c_1 + c_0 = 3c_1 + c_0 \]
5. \[T(5) = c_1 + T(4) = c_1 + 3c_1 + c_0 = 4c_1 + c_0 \]

\[\vdots \]

\[T(n) = c_1 + T(n-1) = \ldots = \ldots = (n-1)c_1 + c_0 \]

\[\text{Closed form expression} \]

\[T(n) = (n - 1) \cdot c_1 + c_0 = O(n) \]
Are we done?

- That was just a guess...not a proof!
 - plugged & chugged to find a pattern
 - and then we guessed at a Big-O
- How can we be sure?
- We prove it using Induction
Induction

- Proof technique to prove statements about *well-ordered* sets
 - well-ordered: order between elements
 - example: the integers, recurrence relations
- Idea:
 - prove that the statement P is true for base case
 - prove that if P is true for some case, then P is true for the next case
- Example for integers
 - prove that a statement P is true for $n=1$
 - prove that if P is true for $n=k$ then P is true for $n=k+1$
Steps to an Inductive Proof

- Base case
 - prove that statement P is true for base case
- Inductive hypothesis
 - assume that P is true for some case $n = k$
- Inductive step
 - prove that if P is true for $n = k$ then P is true for $n = k+1$
- Conclusion
 - Then P must be true for all n
Induction

Inductive step:

Base case:
Induction for `array_max`

- **P(n):** $T(n) = T(n - 1) + c_1$, w/ $T(1) = c_0$ is equal to
 $$f(n) = (n - 1) \cdot c_1 + c_0$$

- Prove for base case: $n=1$
 - $T(1) = c_0$ and $f(1) = (1 - 1) \cdot c_1 + c_0 = c_0$

- Inductive assumption: $n=k$
 - assume $T(k) = f(k)$

- Inductive step: $T(k + 1) = T(k) + c_1$
 $$= (k - 1) \cdot c_1 + c_0 + c_1$$
 $$= k \cdot c_1 + c_0 = f(k + 1)$$
Induction Example #2

\[P(n): A(n) = \sum_{i=1}^{n} 2i \text{ is equal to } f(n) = n \cdot (n + 1) \]

- **Base case:** \(n = 1 \)
 - \(A(1) = 2 \) and \(f(1) = 1 \cdot (1 + 1) = 2 \)

- **Inductive assumption:** \(n = k \)
 - \(\sum_{i=1}^{k} 2i = k \cdot (k + 1) \)

- **Inductive step**
 \[
 A(k + 1) = \sum_{i=1}^{k+1} 2i = \sum_{i=1}^{k} 2i + 2 \cdot (k + 1) = k \cdot (k + 1) + 2 \cdot (k + 1) = (k + 1) \cdot (k + 2) = f(k + 1)
 \]
Induction Example #3

\[P(n): A(n) = \sum_{i=1}^{n} i \] is equal to \[f(n) = \frac{n \cdot (n + 1)}{2} \]
Induction Example #3

$P(n): A(n) = \sum_{i=1}^{n} i$ is equal to $f(n) = \frac{n \cdot (n + 1)}{2}$
Another Induction Example

P(n): \(A(n) = \sum_{i=1}^{n} i \) is equal to \(f(n) = \frac{n \cdot (n + 1)}{2} \)

Activity #3

3 min
Another Induction Example

\[P(n): \quad A(n) = \sum_{i=1}^{n} i \quad \text{is equal to} \quad f(n) = \frac{n \cdot (n + 1)}{2} \]

Activity #3

2 min
Another Induction Example

\[P(n): A(n) = \sum_{i=1}^{n} i \quad \text{is equal to} \quad f(n) = \frac{n \cdot (n + 1)}{2} \]
Another Induction Example

\[P(n): A(n) = \sum_{i=1}^{n} i \] is equal to \[f(n) = \frac{n \cdot (n + 1)}{2} \]

Activity #3
Another Induction Example

\[P(n): A(n) = \sum_{i=1}^{n} i \text{ is equal to } f(n) = \frac{n \cdot (n + 1)}{2} \]

- Prove base case: \(n=1 \)
 - \(A(1) = 1 \) and \(f(1) = \frac{1 \cdot (1 + 1)}{2} = 1 \)
- Induction assumption: \(n=k \)
 - \(A(k) = f(k) \) which means \(\sum_{i=1}^{k} i = \frac{k \cdot (k + 1)}{2} \)
- Prove induction step!
Another Induction Example

- Prove induction step

\[A(k + 1) = \sum_{i=1}^{k+1} i \]

\[= \sum_{i=1}^{k} i + (k + 1) \]

\[= \frac{k \cdot (k + 1)}{2} + (k + 1) \]

\[= \frac{k \cdot (k + 1) + 2 \cdot (k + 1)}{2} \]

\[= \frac{(k + 1) \cdot (k + 2)}{2} \]

\[= f(k + 1) \]
Strong vs. Weak Induction

- Weak induction
 - induction step assumes statement is true for $n=k$ and
 - proves statement is true for $n=k+1$

- Strong induction
 - induction step assumes statement is true for $n=1,2,...,k$
 - and proves true for $n=k+1$

- Strong vs. weak refers to assumption
 - not strength of proof
Strong vs. Weak Induction

Weak:

Strong:
Readings

- Induction handout on course page