Recursion & Induction

CS16: Introduction to Algorithms & Data Structures
Spring 2019
Outline

- Recursion
- Recurrence relations
- Plug & chug
- Induction
- Strong vs. weak induction
“Something defined in terms of itself”
Recursion

- What is a recursive problem?
 - a problem defined in terms of itself
- What is a recursive function?
 - a function defined in terms of itself
 - example: Factorial, Fibonacci
- At each level, the problem/function/pic gets easier/smaller
- How can we solve recursive problems?
Recursive Algorithms

- Algorithms that call themselves
 - Call themselves on smaller inputs (sub-problems)
 - Combine the results to find solution to larger input

- Recursive algorithms
 - Can be very easy to describe & implement :-)"
 - Can be hard to think about and to analyze :-(}
Factorial

iterative: \(n! = \prod_{i=1}^{n} i = n \times (n - 1) \times \cdots \times 1 \)

recursive: \(n! = n \times (n - 1)! \), with \(1! = 1 \)
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

- call \texttt{factorial(3)}
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

› call \textbf{factorial}(3)

› **level #1:** \(3! = 1 \) so \(3 \times \textbf{factorial}(2) \)
Recursive Factorial — Simulation

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call `factorial(3)`
 - level #1: $3! = 1$ so $3 \times factorial(2)$
 - level #2: $2! = 1$ so $2 \times factorial(1)$
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

› call \texttt{factorial(3)}

› \texttt{level \#1: 3! = 1 so 3 \times factorial(2)}

› \texttt{level \#2: 2! = 1 so 2 \times factorial(1)}

› \texttt{level \#3: 1 == 1 so return 1}
Recursive Factorial — Simulation

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call `factorial(3)`
 - **level #1**: $3! = 1$ so $3 \times \text{factorial}(2)$
 - **level #2**: $2! = 1$ so 2×1
 - **level #3**: $1! = 1$ so return 1
Recursive Factorial — Simulation

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call `factorial(3)`
 - level #1: $3! = 1$ so 3×2
 - level #2: $2! = 1$ so 2×1
 - level #3: $1! = 1$ so return 1
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

- call **factorial**(3) = 6
 - fact(3): 3! = 1 so 3 × 2
 - level #2: 2! = 1 so 2 × 1
 - level #3: 1 == 1 so return 1
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1

2 min
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1

1 min
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

```python
array_max([5,1,9,2], 4) = max(2, array_max([5,1,9], 3))
= max(2, max(9, array_max([5,1], 2)))
= max(2, max(9, max(1, array_max([5], 1)))))
= max(2, max(9, max(1, 5)))
= max(2, max(9, 5))
= max(2, 9)
= 9
```

Note: we keep entire array but only show relevant items
Running Time of Recursive Algos

- Difficult to analyze :-(
- With iterative algorithms
 - we can count # of ops per loop
- How can we count # ops in a recursive step?
 - We can’t...
Recurrence Relations

- Functions that express run time recursively

\[T(n) = 2 \cdot T(n - 1) + 10, \quad \text{with} \quad T(1) = 8 \]

- part 1: # of operations in general case
- part 2: # of operations in base case
Example: recursive array_max

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

\[
T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0
\]

- general: constant # ops for comp & max + cost of recursive
- base: constant # ops for comp and return

What about Big-Oh?
Big-Oh from Recurrence Relation

- Step #1: Plug & Chug
 - algebraic manipulations to guess a Big-Oh expression
- Step #2: Induction
 - prove that Big-Oh expression is correct
Example: recursive array_max

\[
T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0
\]

general case

base case

Activity #2
Example: recursive \texttt{array_max}

\[T(n) = T(n-1) + c_1, \quad \text{with}\quad T(1) = c_0 \]

- general case
- base case

\textbf{Activity #2}

3 min
Example: recursive array_max

\[T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0 \]

- general case
- base case

Activity #2

2 min
Example: recursive `array_max`

\[T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0 \]

general case

base case

Activity #2

1 min
Example: recursive \texttt{array_max}

\[
T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0
\]

\begin{align*}
\underline{\text{general case}} & \quad \underline{\text{base case}} \\
\end{align*}

Activity #2

0 min
Plug & Chug

\[T(1) = c_0 \]
\[T(2) = c_1 + T(1) = c_1 + c_0 \]
\[T(3) = c_1 + T(2) = c_1 + c_1 + c_0 = 2c_1 + c_0 \]
\[T(4) = c_1 + T(3) = c_1 + 2c_1 + c_0 = 3c_1 + c_0 \]
\[T(5) = c_1 + T(4) = c_1 + 3c_1 + c_0 = 4c_1 + c_0 \]

\[\vdots \]
\[T(n) = c_1 + T(n-1) = (n-1)c_1 + c_0 \]

- Recurrence solution: closed form expression

\[T(n) = (n - 1) \cdot c_1 + c_0 = O(n) \]
Are we done?

- That was just a guess...not a proof!
 - plugged & chugged to find a pattern
 - and then guessed
- How can we be sure?
- We prove it using Induction
Induction

- Proof technique to prove statements about well-ordered sets
 - well-ordered: order between elements
 - example: the integers, recurrence relations
- Idea
 - prove if statement true for some case, statement true for next case
 - prove statement for base case
- Example for integers
 - prove statement for $n = 1$
 - prove that if statement is true for $n = k$ then true for $n = k+1$
Induction

Inductive step:

Base case:
Induction for \texttt{array_max}

- The solution of $T(n) = T(n - 1) + c_1, T(1) = c_0$ is
 \[(n - 1) \cdot c_1 + c_0 \]

- Base case: $n=1$
 - $T(1) = c_0$
 - $(1 - 1)c_1 + c_0 = c_0$

- Inductive assump: $n=k$
 - $T(k) = (k - 1) \cdot c_1 + c_0$

- Inductive step
 - $T(k + 1) = c_1 + T(k)$
 - $= c_1 + (k - 1) \cdot c_1 + c_0$
 - $= k \cdot c_1 + c_0$

Rec. rel.

Simplify
Induction Example #2

\[A(n) = 2 + 4 + \cdots + 2n = n \cdot (n + 1) \]

- **Base case:** \(n = 1 \)
 - \(2 \cdot 1 \) and \(1 \cdot (1 + 1) = 1 \cdot 2 = 2 \)

- **Inductive assumption:** \(n = k \)
 - \(A(k) = 2 + 4 + \cdots + 2k = k \cdot (k + 1) \)

- **Inductive step:** \(A(k + 1) = 2 + 4 + \cdots + 2k + 2 \cdot (k + 1) = k \cdot (k + 1) + 2 \cdot (k + 1) \)
 - factor out \((k + 1) \)
 - \(= (k + 1) \cdot (k + 2) \)
Induction Example #3

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]
Induction Example #3

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

Activity #3

3 min
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

Activity #3

2 min
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

Activity #3

0 min
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

- Prove base case: \(n=1 \)
 \[\sum_{i=1}^{1} i = 1 \quad \text{and} \quad \frac{1 \cdot (1 + 1)}{2} = 1 \]
- Induction assumption: \(n=k \)
 \[\sum_{i=1}^{k} i = \frac{k \cdot (k + 1)}{2} \]
- Prove induction step!
Another Induction Example

- Prove induction step

\[\sum_{i=1}^{k+1} i = 1 + 2 + \cdots + k + (k + 1) \]

\[= \sum_{i=1}^{k} i + (k + 1) \]

\[= \frac{k \cdot (k + 1)}{2} + (k + 1) \]

\[= \frac{k \cdot (k + 1)}{2} + \frac{2 \cdot (k + 1)}{2} \]

\[= \frac{(k + 1) \cdot (k + 2)}{2} \]

Induction assumption:

\[\sum_{i=1}^{k} i = \frac{k \cdot (k + 1)}{2} \]

Factor out \((k + 1)\)
Strong vs. Weak Induction

- Weak induction
 - induction step assumes true for \(n=k \) and
 - proves true for \(n=k+1 \)

- Strong induction
 - induction step assumes true for \(n=1, 2, ..., k \) and
 - proves true for \(n=k+1 \)

- Strong vs. weak refers to assumption
 - not strength of proof
Strong vs. Weak Induction

Weak:

Strong:
Readings

- Induction handout on course page