Recursion & Induction

CS16: Introduction to Algorithms & Data Structures
Spring 2019
Outline

- Recursion
- Recurrence relations
- Plug & chug
- Induction
- Strong vs. weak induction
“Something defined in terms of itself”
Recursion

- What is a recursive problem?
 - a problem defined in terms of itself
- What is a recursive function?
 - a function defined in terms of itself
 - example: Factorial, Fibonacci
- At each level, the problem/function/pic gets easier/smaller
- How can we solve recursive problems?
Recursive Algorithms

- Algorithms that call themselves
 - Call themselves on smaller inputs (sub-problems)
 - Combine the results to find solution to larger input
- Recursive algorithms
 - Can be very easy to describe & implement :-)"
 - Can be hard to think about and to analyze :-(

Factorial

iterative:
\[n! = \prod_{i=1}^{n} i = n \times (n - 1) \times \cdots \times 1 \]

recursive:
\[n! = n \times (n - 1)!, \text{ with } 1! = 1 \]
Recursive Factorial — Simulation

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call `factorial(3)`
Recursive Factorial — Simulation

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call `factorial(3)`
 - level #1: $3 \neq 1$ so $3 \times \text{factorial}(2)$
Recursive Factorial — Simulation

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call `factorial(3)`
 - level #1: $3 \neq 1$ so $3 \times \text{factorial}(2)$
 - level #2: $2 \neq 1$ so $2 \times \text{factorial}(1)$
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

› call factorial(3)

› level #1: 3]!=1 so 3 × factorial(2)

› level #2: 2!=1 so 2 × factorial(1)

› level #3: 1==1 so return 1
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

› call factorial(3)
 › level #1: 3≠1 so 3 x factorial(2)
 › level #2: 2≠1 so 2 x 1
 › level #3: 1==1 so return 1
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

call factorial(3)

 level #1: 3≠1 so 3 x 2

 level #2: 2≠1 so 2 x 1

 level #3: 1==1 so return 1
Recursive Factorial — Simulation

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call `factorial(3) = 6`
 - `fact(3): 3!=1 so 3 x 2`
 - `level #2: 2!=1 so 2 x 1`
 - `level #3: 1==1 so return 1`
Wait a minute!!

you keep calling factorial but never actually implemented it
def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)
 Recursive Factorial — Simulation

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```
Recursion & Clones

- At each intersection
 - clone yourself twice and send one Left and one Right
 - wait for clones to report a path to exit (if it exists) and its length
 - pick direction that gets you to exit the fastest
Example: recursive `array_max`

def array_max(array, n):
 if n == 1:
 return array[0]
 else:
 return max(array[n-1], array_max(array, n-1))

Activity #1
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1

2 min
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1

1 min
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1
Example: recursive array_max

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

array_max([5,1,9,2], 4) = max(2, array_max([5,1,9], 3))
= max(2, max(9, array_max([5,1], 2)))
= max(2, max(9, max(1, array_max([5], 1))))
= max(2, max(9, max(1, 5)))
= max(2, max(9, 5))
= max(2, 9)
= 9

Note: we keep entire array but only show relevant items
Running Time of Recursive Algos

- Difficult to analyze :-(
- With iterative algorithms
 - we can count # of ops per loop
- How can we count # ops in a recursive step?
 - We can’t…

```python
def factorial(n):
    out = 1
    for i in range(1, n+1):
        out = i * out
    return out

def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```
Recurrence Relations

- Functions that express run time recursively

\[T(n) = 2 \cdot T(n - 1) + 10, \text{ with } T(1) = 8 \]

- part 1: # of operations in general case
- part 2: # of operations in base case
Example: recursive \texttt{array_max}

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

\[T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0 \]

- \text{general: constant \# ops for comp \& max + cost of recursive call}
- \text{base: constant \# ops for comp and return}

What about Big-Oh?
Big-O from Recurrence Relation

- Step #1: Plug & Chug
 - algebraic manipulations to guess a Big-O expression
- Step #2: Induction
 - prove that Big-O expression is correct
Example: recursive \texttt{array_max}

\[T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0 \]

general case \hspace{2cm} base case

Activity #2
Example: recursive *array_max*

\[T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0 \]

general case

base case

Activity #2

3 min
Example: recursive \texttt{array_max}

\[
T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0
\]

\text{general case}\hspace{10cm} \text{base case}

Activity #2

2 min
Example: recursive array_max

\[T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0 \]

- \(T(n) \) \quad \text{general case}
- \(T(1) \) \quad \text{base case}

Activity #2

1 min
Example: recursive \texttt{array_max}

\[
T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0
\]

general case

base case

\textbf{Activity #2}
Plug & Chug

\[T(1) = c_0 \]
\[T(2) = c_1 + T(1) = c_1 + c_0 \]
\[T(3) = c_1 + T(2) = c_1 + c_1 + c_0 = 2c_1 + c_0 \]
\[T(4) = c_1 + T(3) = c_1 + 2c_1 + c_0 = 3c_1 + c_0 \]
\[T(5) = c_1 + T(4) = c_1 + 3c_1 + c_0 = 4c_1 + c_0 \]

\[\vdots \]

\[T(n) = c_1 + T(n-1) = (n-1)c_1 + c_0 \]

- Recurrence solution: closed form expression

\[T(n) = (n - 1) \cdot c_1 + c_0 = O(n) \]
Are we done?

- That was just a guess...not a proof!
 - plugged & chugged to find a pattern
 - and then we guessed at a Big-O
- How can we be sure?
- We prove it using Induction
Induction

- Proof technique to prove statements about well-ordered sets
 - well-ordered: order between elements
 - example: the integers, recurrence relations
- Idea:
 - prove that the statement P is true for base case
 - prove that if P is true for some case, then P is true for the next case
- Example for integers
 - prove that a statement P is true for $n=1$
 - prove that if P is true for $n=k$ then P is true for $n=k+1$
Induction

Inductive step:

Base case:
Proof for base case: \(n = 1 \)

- \(T(1) = c_0 \) and \(f(1) = (1 - 1) \cdot c_1 + c_0 = c_0 \)

Inductive assumption: \(n = k \)

- \(T(k) = f(k) \)

Inductive step: \(T(k + 1) = T(k) + c_1 \)

\[= (k - 1) \cdot c_1 + c_0 + c_1 \]

\[= k \cdot c_1 + c_0 \]
Induction Example #2

\[P(n): A(n) = \sum_{i=1}^{n} 2i \] is equal to \[f(n) = n \cdot (n + 1) \]

- **Base case:** \(n = 1 \)
 - \(A(1) = 2 \) and \(f(1) = 1 \cdot (1 + 1) = 2 \)

- **Inductive assumption:** \(n=k \)
 - \[\sum_{i=1}^{k} 2i = k \cdot (k + 1) \]

- **Inductive step**
 - \[A(k+1) = \sum_{i=1}^{k+1} 2i \]
 - \[= \sum_{i=1}^{k} 2i + 2 \cdot (k + 1) \]
 - \[= k \cdot (k + 1) + 2 \cdot (k + 1) \]
 - \[= (k + 1) \cdot (k + 2) \]
 - \[= f(k + 1) \]
Induction Example #3

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]
Induction Example #3

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

Activity #3

3 min
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

Activity #3

2 min
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

Activity #3

1 min
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

Activity #3
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

- Prove base case: \(n=1 \)
 - \(\sum_{i=1}^{1} i = 1 \) and \(\frac{1 \cdot (1 + 1)}{2} = 1 \)

- Induction assumption: \(n=k \)
 - \(\sum_{i=1}^{k} i = \frac{k \cdot (k + 1)}{2} \)

- Prove induction step!
Another Induction Example

- Prove induction step

\[\sum_{i=1}^{k+1} i = 1 + 2 + \cdots + k + (k+1) \]

\[= \sum_{i=1}^{k} i + (k + 1) \]

\[= \frac{k \cdot (k + 1)}{2} + (k + 1) \]

\[= \frac{(k + 1) \cdot (k + 2)}{2} \]

Induction assumption

\[\sum_{i=1}^{k} i = \frac{k \cdot (k + 1)}{2} \]

factor out \((k + 1)\)

\[\times \frac{2}{2} \]
Strong vs. Weak Induction

- Weak induction
 - induction step assumes true for \(n=k \) and
 - proves true for \(n=k+1 \)

- Strong induction
 - induction step assumes true for \(n=1, 2, \ldots, k \) and
 - proves true for \(n=k+1 \)

- Strong vs. weak refers to assumption
 - not strength of proof
Strong vs. Weak Induction

Weak:

Strong:
Readings

- Induction handout on course page