Expanding
Stacks & Queues

CS16: Introduction to Data Structures & Algorithms
Seny Kamara - Spring 2017
This is Hard!

You will understand it...
Struggle is a prelude to success.
Outline

- Abstract data types
- Stacks
 - Capped-capacity
 - Expandable
- Amortized analysis
- Queues
 - Expandable queues
Abstract Data Types

- Abstraction of a data structure
- Specifies “functionality”
 - type of data stored
 - operations it can perform
- Like a Java interface
 - Specifies name & purpose of methods
 - But not implementations
Stacks

- Stores
 - arbitrary objects

- Operations
 - **Push**: adds object
 - **Pop**: returns last object
 - **LIFO**: last-in first-out

- Implemented
 - Linked list, array, …
Stack ADT

- **push**(object):
 - inserts object

- **object pop**():
 - returns and removes last inserted object

- **int size**():
 - returns number objects in stack

- **boolean isEmpty**():
 - returns TRUE if empty; FALSE otherwise
Capped-capacity Stack

- Array-based Stack
 - Store objects in array
 - keep pointer to last inserted object
- Problem?
 - Size of stack bounded by size of array :-(

Capped-capacity Stack

Stack():
data = array of size 20
count = 0

function isEmpty():
return count == 0

function size():

function push(object):

function pop():

Activity #1
Capped-capacity Stack

Stack():
 data = array of size 20
 count = 0

function isEmpty():
 return count == 0

function size():
 ??????

function push(object):
 ??????

function pop():
 ??????

Activity #1
Capped-capacity Stack

Stack():
- `data = array of size 20`
- `count = 0`

isEmpty():
- `return count == 0`

size():
- `??????`

push(object):
- `??????`

pop():
- `??????`

Activity #1
Capped-capacity Stack

Stack():
- data = array of size 20
- count = 0

Function isEmpty():
- return count == 0

Function size():
- ????

Function push(object):
- ????

Function pop():
- ????
Capped-capacity Stack

Stack():
 data = array of size 20
 count = 0

function size():
 return count

function isEmpty():
 return count == 0

function push(object):
 if count < 20:
 data[count] = object
 count++
 else:
 error("overfull")

function pop():
 if count == 0:
 error("empty stack")
 else:
 count--
 return data[count]
Expandable Stack

- Capped-capacity stack is fast
 - but not useful in practice
- How can we design an *uncapped* Stack?
- Strategy #1: **Incremental**
 - increase size of array by constant \(c \) when full
- Strategy #2: **Doubling**
 - double size of array when full

Arrays can’t be resized!
Can only be copied
Expandable Stack

\[\text{Stack}() : \]
\[\text{data} = \text{array of size 20} \]
\[\text{count} = 0 \]
\[\text{capacity} = 20 \]

- run time when not expanding?
- when does it expand?

\[\text{function push(object)} : \]
\[\text{data[count]} = \text{object} \]
\[\text{count}++ \]
\[\text{if count} == \text{capacity} \]
\[\quad \text{new_capacity} = \text{capacity} + c /* \text{incremental} */ \]
\[\quad \quad = \text{capacity} * 2 /* \text{doubling} */ \]
\[\quad \text{new_data} = \text{array of size new_capacity} \]
\[\quad \text{for i = 0 to capacity - 1} \]
\[\quad \quad \text{new_data}[i] = \text{data}[i] \]
\[\quad \text{capacity} = \text{new_capacity} \]
\[\quad \text{data} = \text{new_data} \]
Expandable Stack

function \texttt{push}(\texttt{object}):
\begin{align*}
 \text{data[count]} &= \text{object} \\
 \text{count} &= \text{count} + 1 \\
 \text{if count} &= \text{capacity} \\
 \quad \text{new_capacity} &= \text{capacity} + c /* \text{incremental} */ \\
 \quad &= \text{capacity} \times 2 /* \text{doubling} */ \\
 \quad \text{new_data} &= \text{array of size new_capacity} \\
 \quad \text{for } i = 0 \text{ to } \text{capacity} - 1 \\
 \quad \quad \text{new_data}[i] &= \text{data}[i] \\
 \quad \text{capacity} &= \text{new_capacity} \\
 \text{data} &= \text{new_data}
\end{align*}

- Run time when not expanding: \(O(1) \)
- When does it expand?
 - after \(n \) pushes, where \(n \) is capacity of array
Incremental & Doubling

Incremental (5)

Push number

Cost

Doubling

Push number

Cost

$O(1)$

$O(1)$

$O(n)$
Incremental & Doubling

- What is the running time of incremental?
 - $O(1)$ or $O(n)$?

- What is the running time of doubling?
 - $O(1)$ or $O(n)$?

- It depends...
What’s going on?
Stack():
 data = array of size 20
 count = 20
 capacity = 20

function `push(object)`:
 data[count] = object
 count++
 if count == capacity
 new_capacity = capacity + c /* incremental */
 = capacity * 2 /* doubling */
 new_data = array of size new_capacity
 for i = 0 to capacity - 1
 new_data[i] = data[i]
 capacity = new_capacity
 data = new_data

Run time depends on state/history
Incremental & Doubling

- What is the running time of incremental?
 - $O(1)$ or $O(n)$?
- What is the running time of doubling?
 - $O(1)$ or $O(n)$?
- It depends...

Measure cost on sequence of inputs not a single input!
Towards Amortized Analysis

- For certain algorithms better to measure
 - total running time on sequence of operations
 - instead of running time on single operation
 - $T(n)$: total cost on sequence of n operations
- Not running time on a single input
- Usually the case for data structure operations
- ex: Stack
 - $T(n)$: cost push #1 + cost push #2 + ... + cost push #n
Amortized Analysis

- Instead of reporting total cost of sequence
- report cost of sequence per operation

\[
\frac{T(n)}{n}
\]
Amortized Analysis of Incremental

- Stack with capacity 5
- Expands by $c = 5$

- 5th push brings to capacity
 - Objects copied to new array of size $5+c = 10$
 - Total cost per push over 5 pushes?
Amortized Analysis of Incremental

Stack with capacity 5
Expands by \(c = 5 \)

\[
\frac{T(n)}{n} = \frac{5 + c}{5} = \frac{5 + 5}{5} = 2
\]

Cost of 5 pushes
Cost of expansion

Is each push \(O(1) \)?
Amortized Analysis of Incremental

- What if we push 5 more objects?
 - $O(1)$ until 10th push brings to capacity
 - then all 10 objects copied to new array
 - of size $10 + c = 15$

\[
\frac{T(n)}{n} : \frac{10 + c + 2c}{10} = \frac{10 + 5 + 10}{10} = 2.5
\]

Cost of 10 pushes Cost of 1st expansion Cost of 2nd expansion
Amortized Analysis of Incremental Activity #2

\[
\frac{T(n)}{n} : \frac{T(10)}{10} = \frac{10 + c + 2c}{10} = \frac{10 + 5 + 10}{10} = 2.5
\]

\[
\frac{T(n)}{n} : \frac{T(15)}{15} = \frac{15 + c + 2c + 3c}{15} = \frac{15 + 5 + 10 + 15}{15} = 3
\]

\[
\frac{T(n)}{n} : \frac{T(20)}{20} = ?
\]

Activity #2
Amortized Analysis of Incremental Activity #2

\[
\frac{T(n)}{n} : \frac{T(10)}{10} = \frac{10 + c + 2c}{10} = \frac{10 + 5 + 10}{10} = 2.5
\]

\[
\frac{T(n)}{n} : \frac{T(15)}{15} = \frac{15 + c + 2c + 3c}{15} = \frac{15 + 5 + 10 + 15}{15} = 3
\]

\[
\frac{T(n)}{n} : \frac{T(20)}{20} = ?
\]

Activity #2

1 min
Amortized Analysis of Incremental Activity #2

\[
\frac{T(n)}{n} : \frac{T(10)}{10} = \frac{10 + c + 2c}{10} = \frac{10 + 5 + 10}{10} = 2.5
\]

\[
\frac{T(n)}{n} : \frac{T(15)}{15} = \frac{15 + c + 2c + 3c}{15} = \frac{15 + 5 + 10 + 15}{15} = 3
\]

\[
\frac{T(n)}{n} : \frac{T(20)}{20} = ?
\]
Amortized Analysis of Incremental

\[
\frac{T(n)}{n} : \frac{T(10)}{10} = \frac{10 + c + 2c}{10} = \frac{10 + 5 + 10}{10} = 2.5
\]

\[
\frac{T(n)}{n} : \frac{T(15)}{15} = \frac{15 + c + 2c + 3c}{15} = \frac{15 + 5 + 10 + 15}{15} = 3
\]

\[
\frac{T(n)}{n} : \frac{T(20)}{20} = \frac{20 + c + 2c + 3c + 4c}{20} = \frac{20 + 5 + 10 + 15 + 20}{20} = 3.5
\]

› So on and so forth…

› Looks linear…
Amortized Analysis of Incremental

\[T(n) = n + c + 2c + 3c + \cdots + \frac{n}{c} \cdot c \]

\[= n + c \cdot \left(1 + 2 + \cdots + \frac{n}{c} \right) \]

\[= n + c \cdot \frac{1}{2} \cdot \left(\frac{n}{c} \left(\frac{n}{c} + 1 \right) \right) \]

\[= n + \frac{n^2/c + n}{2} \]

\[= O(n^2) \]

\[\frac{T(n)}{n} = O(n) \]
Amortized Analysis of Incremental

- Summary
 - Total cost of n pushes: $T(n) = O(n^2)$
 - Amortized cost of n pushes: $T(n)/n = O(n)$
Amortized Analysis of Doubling

- ex: doubling stack with initial capacity 5?
 - pushes are $O(1)$ until 5th push
 - then $O(n)$

\[
\frac{T(n)}{n} : \frac{T(5)}{5} = \frac{5 + 5}{5} = 2
\]

\[
\frac{T(n)}{n} : \frac{T(10)}{10} = \frac{10 + 5 + 10}{10} = 2.5
\]

\[
\frac{T(n)}{n} : \frac{T(20)}{20} = \frac{20 + 5 + 10 + 20}{20} = 2.75
\]
Amortized Analysis of Doubling

\[T(n) = n + n + \frac{n}{2} + \frac{n}{4} + \cdots + \frac{n}{2^{k-1}} \]

\[= n + n \cdot \left(1 + \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^{k-1}} \right) \]

\[< n + n \cdot 2 \]

\[= 3n \]

\[\frac{T(n)}{n} = O(1) \]
Amortized Analysis

- Summary for Incremental
 - Total cost of \(n \) pushes: \(T(n) = O(n^2) \)
 - Amortized cost of \(n \) pushes: \(T(n)/n = O(n) \)

- Summary for Doubling
 - Total cost of \(n \) pushes: \(T(n) = O(n) \)
 - Amortized cost of \(n \) pushes: \(T(n)/n = O(1) \)
Way to Think about Amortized

- Each fast operation adds some credit
- Need enough credits to execute slow operation
Queue ADT

- **enqueue**(object):
 - inserts object

- **object dequeue()**:
 - returns and removes first inserted object

- **int size()**:
 - returns number objects in queue

- **boolean isEmpty()**:
 - returns TRUE if empty; FALSE otherwise
Expandable Queue

- Can be implemented with expandable array
 - need to keep track of head and tail
- What happens when tail reaches end?
 - Is the queue full?
- So when should we expand array?
Expandable Queue

- Wrap around until array is completely full
- When expanding re-order objects properly
Expandable Queue

function **enqueue**(object):
 if size == capacity
 double array and copy contents
 reset head and tail pointers
 data[tail] = object
 tail = (tail + 1) % capacity
 size++

function **dequeue**():
 if size == 0
 error("queue empty")
 element = data[head]
 head = (head + 1) % capacity
 size--
 return element

\[
\frac{T(n)}{n} = O(1)
\]