Apply to be a Meiklejohn!

Meiklejohn applications due February 16 at 5:00pm

tinyurl.com/meikapply
Seeking a community to discuss the intersections of CS and positive social change? Interested in facilitating collaborations between students and non-profit organizations? Apply to join our leadership team! (More info in the link below!)

Make an impact. Apply by February 21st:
https://goo.gl/forms/fXGUHXE8WrOzHXEo1

Questions? Contact us at cssc@brown.edu
Expanding Stacks & Queues

CS16: Introduction to Data Structures & Algorithms
Seny Kamara - Spring 2018
Outline

- Abstract data types
- Stacks
 - Capped-capacity
 - Expandable
- Amortized analysis
- Queues
 - Expandable queues
Abstract Data Types

- Abstraction of a data structure
- Specifies “functionality”
 - type of data stored
 - operations it can perform
- Like a Java interface
 - Specifies name & purpose of methods
 - But not implementations
Stacks

- Stores
 - arbitrary objects

- Operations
 - **Push**: adds object
 - **Pop**: returns last object
 - LIFO: last-in first-out

- Implemented
 - Linked list, array, …
Stack ADT

- **push**(object):
 - inserts object

- **object** **pop**():
 - returns and removes last inserted object

- **int** **size**():
 - returns number objects in stack

- **boolean** **isEmpty**():
 - returns TRUE if empty; FALSE otherwise
Capped-capacity Stack

- Array-based Stack
 - Store objects in array
 - keep pointer to last inserted object

- Problem?
 - Size of stack bounded by size of array :-(

Capped-capacity Stack

Stack():
 data = array of size 20
 count = 0

function isEmpty():
 return count == 0

function size():
 ??????

function push(object):
 ??????

function pop():
 ??????

Activity #1
Capped-capacity Stack

Stack():
 data = array of size 20
 count = 0

function isEmpty():
 return count == 0

function size():
 ?????

function push(object):
 ?????

function pop():
 ?????

Activity #1
Capped-capacity Stack

Stack():
- data = array of size 20
- count = 0

function isEmpty():
- return count == 0

function size():
- ??????

function push(object):
- ??????

function pop():
- ??????

Activity #1

1 min
Capped-capacity Stack

Stack():
- data = array of size 20
- count = 0

function size():
- ????

function isEmpty():
- return count == 0

function push(object):
- ????

function pop():
- ????
Capped-capacity Stack

Stack():
 data = array of size 20
 count = 0

function size():
 return count

function isEmpty():
 return count == 0

function push(object):
 if count < 20:
 data[count] = object
 count++
 else:
 error(“overfull”)

function pop():
 if count == 0:
 error(“empty stack”)
 else:
 count--
 return data[count]
Expandable Stack

- Capped-capacity stack is fast
 - but not useful in practice
- How can we design an *uncapped* Stack?
- Strategy #1: **Incremental**
 - increase size of array by constant c when full
- Strategy #2: **Doubling**
 - double size of array when full

Arrays can’t be resized!
Can only be copied
Expandable Stack

Stack():
- data = array of size 20
- count = 0
- **capacity = 20**

function **push**(object):
- data[count] = object
- count++
- if count == capacity
 - new_capacity = capacity + c /* incremental */
 = capacity * 2 /* doubling */
 - new_data = array of size new_capacity
 - for i = 0 to capacity - 1
 - new_data[i] = data[i]
 - capacity = new_capacity
 - data = new_data

- run time when not expanding?
- when does it expand?
Expandable Stack

function **push**(object):
 data[count] = object
 count++
 if count == capacity
 new_capacity = *capacity + c* /* incremental */
 = *capacity * 2* /* doubling */
 new_data = array of size new_capacity
 for i = 0 to capacity - 1
 new_data[i] = data[i]
 capacity = new_capacity
 data = new_data

- Run time when not expanding: $O(1)$
- When does it expand?
 - after n pushes, where n is capacity of array
Incremental & Doubling

Incremental (5)

Doubling
Incremental & Doubling

- What is the running time of incremental?
 - $O(1)$ or $O(n)$?

- What is the running time of doubling?
 - $O(1)$ or $O(n)$?

- It depends...
What's going on?
Expandable Stack

Stack():
 data = array of size 20
 count = 20
 capacity = 20

function push(object):
 data[count] = object
 count++
 if count == capacity
 new_capacity = capacity + c /* incremental */
 = capacity * 2 /* doubling */
 new_data = array of size new_capacity
 for i = 0 to capacity - 1
 new_data[i] = data[i]
 capacity = new_capacity
 data = new_data

Run time depends on state/history
Incremental & Doubling

- What is the running time of incremental?
 - $O(1)$ or $O(n)$?
- What is the running time of doubling?
 - $O(1)$ or $O(n)$?
- It depends...

Measure cost on sequence of inputs not a single input!
Towards Amortized Analysis

- For certain algorithms better to measure
 - total running time on sequence of operations
 - instead of running time on single operation
 - \(T(n) \): total cost on sequence of \(n \) operations

- Not running time on a single input

- Usually the case for data structure operations

- ex: Stack
 - \(T(n) \): cost push \#1 + cost push \#2 + \ldots + cost push \#n
Amortized Analysis

- Instead of reporting total cost of sequence
- report cost of sequence per operation

\[
\frac{T(n)}{n}
\]
Amortized Analysis of Incremental

- Stack with capacity 5
- Expands by \(c = 5 \)

- 5th push brings to capacity
 - Objects copied to new array of size \(5 + c = 10 \)
 - Total cost per push over 5 pushes?
Amortized Analysis of Incremental

- Stack with capacity 5
- Expands by $c = 5$

Cost of 5 pushes

\[
\frac{T(n)}{n} \cdot \frac{5 + c}{5} = \frac{5 + 5}{5} = 2
\]

Cost of expansion

Is each push $O(1)$?
Amortized Analysis of Incremental

- What if we push 5 more objects?
- $O(1)$ until 10th push brings to capacity
 - then all 10 objects copied to new array
 - of size $10+c = 15$

\[
\frac{T(n)}{n} : \quad \frac{10 + c + 2c}{10} \quad \frac{10 + 5 + 10}{10} = 2.5
\]

Cost of 10 pushes

Cost of 1st expansion

Cost of 2nd expansion
Amortized Analysis of Incremental Activity #2

\[\frac{T(n)}{n} : \frac{T(10)}{10} = \frac{10 + c + 2c}{10} = \frac{10 + 5 + 10}{10} = 2.5 \]

\[\frac{T(n)}{n} : \frac{T(15)}{15} = \frac{15 + c + 2c + 3c}{15} = \frac{15 + 5 + 10 + 15}{15} = 3 \]

\[\frac{T(n)}{n} : \frac{T(20)}{20} = ? \]

Activity #2
Amortized Analysis of Incremental

\[
\begin{align*}
\frac{T(n)}{n} : \frac{T(10)}{10} &= \frac{10 + c + 2c}{10} = \frac{10 + 5 + 10}{10} = 2.5 \\
\frac{T(n)}{n} : \frac{T(15)}{15} &= \frac{15 + c + 2c + 3c}{15} = \frac{15 + 5 + 10 + 15}{15} = 3
\end{align*}
\]

Activity #2

1 min
Amortized Analysis of Incremental

\[
\frac{T(n)}{n} : \frac{T(10)}{10} = \frac{10 + c + 2c}{10} = \frac{10 + 5 + 10}{10} = 2.5
\]

\[
\frac{T(n)}{n} : \frac{T(15)}{15} = \frac{15 + c + 2c + 3c}{15} = \frac{15 + 5 + 10 + 15}{15} = 3
\]

\[
\frac{T(n)}{n} : \frac{T(20)}{20} = ?
\]

Activity #2

0 min
Amortized Analysis of Incremental

\[
\frac{T(n)}{n} : \frac{T(10)}{10} = \frac{10 + c + 2c}{10} = \frac{10 + 5 + 10}{10} = 2.5
\]

\[
\frac{T(n)}{n} : \frac{T(15)}{15} = \frac{15 + c + 2c + 3c}{15} = \frac{15 + 5 + 10 + 15}{15} = 3
\]

\[
\frac{T(n)}{n} : \frac{T(20)}{20} = \frac{20 + c + 2c + 3c + 4c}{20} = \frac{20 + 5 + 10 + 15 + 20}{20} = 3.5
\]

- So on and so forth...
- Looks linear...
Amortized Analysis of Incremental

\[T(n) = n + c + 2c + 3c + \cdots + \frac{n}{c} \cdot c \]

\[= n + c \cdot \left(1 + 2 + \cdots + \frac{n}{c} \right) \]

\[= n + c \cdot \frac{1}{2} \cdot \left(\frac{n}{c} \left(\frac{n}{c} + 1 \right) \right) \]

\[= n + \frac{n^2}{2c} + n \]

\[= O(n^2) \]

\[
\frac{T(n)}{n} = O(n)
\]

n pushes w/o exp.

cost of exp. # n/c

\[T(n) = n + c + 2c + 3c + \cdots + \frac{n}{c} \cdot c \]

\[= n + c \cdot \left(1 + 2 + \cdots + \frac{n}{c} \right) \]

\[= n + c \cdot \frac{1}{2} \cdot \left(\frac{n}{c} \left(\frac{n}{c} + 1 \right) \right) \]

\[= n + \frac{n^2}{2c} + n \]

\[= O(n^2) \]

\[
\frac{T(n)}{n} = O(n)
\]
Amortized Analysis of Incremental

- Summary
 - Total cost of \(n \) pushes: \(T(n) = O(n^2) \)
 - Amortized cost of \(n \) pushes: \(T(n)/n = O(n) \)
Amortized Analysis of Doubling

- ex: doubling stack with initial capacity 5?
 - pushes are $O(1)$ until 5th push
 - then $O(n)$

\[
\frac{T(n)}{n} : \frac{T(5)}{5} = \frac{5 + 5}{5} = 2
\]

\[
\frac{T(n)}{n} : \frac{T(10)}{10} = \frac{10 + 5 + 10}{10} = 2.5
\]

\[
\frac{T(n)}{n} : \frac{T(20)}{20} = \frac{20 + 5 + 10 + 20}{20} = 2.75
\]
Amortized Analysis of Doubling

\[T(n) = n + n + \frac{n}{2} + \frac{n}{4} + \cdots + \frac{n}{2^{k-1}} \]

\[= n + n \cdot \left(1 + \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^{k-1}}\right) \]

\[< n + n \cdot 2 \]

\[= 3n \]

\[\frac{T(n)}{n} = O(1) \]

\[\lim_{k \to \infty} \sum_{i=0}^{k} \frac{1}{2^i} = 2 \]
Amortized Analysis

- Summary for Incremental
 - Total cost of n pushes: $T(n) = O(n^2)$
 - Amortized cost of n pushes: $T(n)/n = O(n)$

- Summary for Doubling
 - Total cost of n pushes: $T(n) = O(n)$
 - Amortized cost of n pushes: $T(n)/n = O(1)$
Way to Think about Amortized

- Each fast operation adds some credit
- Need enough credits to execute slow operation
Queue ADT

- **enqueue**(object):
 - inserts object

- **object dequeue**():
 - returns and removes first inserted object

- **int size**():
 - returns number objects in queue

- **boolean isEmpty**():
 - returns TRUE if empty; FALSE otherwise
Expandable Queue

- Can be implemented with expandable array
 - need to keep track of head and tail
- What happens when tail reaches end?
 - Is the queue full?
- So when should we expand array?
Expandable Queue

- Wrap around until array is completely full
- When expanding re-order objects properly
Expandable Queue

function **enqueue**(object):
 if size == capacity
 double array and copy contents
 reset head and tail pointers
 data[tail] = object
 tail = (tail + 1) % capacity
 size++

function **dequeue**():
 if size == 0
 error(“queue empty”)
 element = data[head]
 head = (head + 1) % capacity
 size--
 return element

$$\frac{T(n)}{n} = O(1)$$