Analysis,
Plug & Chug,
Induction

CS16: Introduction to Algorithms & Data Structures
Outline

- Recursion
- Recurrence relations
- Plug & chug
- Induction
- Strong vs. weak induction
“Something defined in terms of itself”
Recursion

- What is a recursive problem?
 - a problem defined in terms of itself
- What is a recursive function?
 - a function defined in terms of itself
 - example: Fibonacci

Note: at each level problem/function/pic gets easier/smaller

- How could we solve a recursive problem?
 - Keep going down until sub-problem becomes small/easy
 - Back up & combine answer to sub-prob to solve prob
Fibonacci

\[F(n) = F(n - 1) + F(n - 2) \]

base cases:

\[F(0) = 1 \& F(1) = 1 \]
Factorial

\[n! = \prod_{i=1}^{n} i = n \times (n - 1) \times \cdots \times 1 \]

iterative:
\[n! = n \times (n - 1)! \]

recursive:
\[n! = n \times (n - 1)! \]
Recursive Factorial — Simulation

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- **call** `factorial(3)`
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

▪ call factorial(3)
 ▪ fact(3): 3 ！= 1 so 3 × factorial(2)
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

- call \texttt{factorial(3)}
 - \texttt{fact(3): 3 \neq 1} so \texttt{3 \times factorial(2)}
 - \texttt{fact(2): 2 \neq 1} so \texttt{2 \times factorial(1)}
Recursive Factorial — Simulation

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

call `factorial(3)`

- `fact(3): 3 != 1` so `3 * factorial(2)`
 - `fact(2): 2 != 1` so `2 * factorial(1)`
 - `fact(1): 1 == 1` so return 1
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

- call factorial(3)
 - fact(3): 3 != 1 so 3 \times \text{factorial}(2)
 - fact(2): 2 != 1 so 2 \times 1
 - fact(1): 1 == 1 so return 1
Recursive Factorial — Simulation

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

call factorial(3)

 fact(3): 3 != 1 so 3 x 2

 fact(2): 2 != 1 so 2 x 1

 fact(1): 1 == 1 so return 1
Recursive Factorial — Simulation

```python
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

- call `factorial(3) = 6`
 - `fact(3): 3 != 1` so `3 * 2`
 - `fact(2): 2 != 1` so `2 * 1`
 - `fact(1): 1 == 1` so return `1`
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1

2 min
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1

1 min
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

Activity #1
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

`array_max([5,1,9,2], 4) = max(2, array_max([5,1,9], 3))
= max(2, max(9, array_max([5,1], 2)))
= max(2, max(9, max(1, array_max([5], 1))))
= max(2, max(9, max(1, 5)))
= max(2, max(9, 5))
= max(2, 9)
= 9`

Note: we keep entire array but only show relevant items
Running Time of Recursive Algos

- Difficult to analyze :-(
- Remember Seamcarve?
 - to analyze we counted # of ops per loop
- How can we count # ops in a recursive step?
Recurrence Relations

- Functions that express run time recursively
 - part 1: # of operations in base case
 - part 2: # of operations in general case

\[
T(n) = 2 \cdot T(n - 1) + 10, \quad \text{with} \quad T(1) = 8
\]

- general case
- base case
Example: recursive `array_max`

```python
def array_max(array, n):
    if n == 1:
        return array[0]
    else:
        return max(array[n-1], array_max(array, n-1))
```

\[T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0 \]

- general: constant \# ops for comp \& max + cost of recursive
- base: constant \# ops for comp and return

What about Big-Oh?
Big-Oh from Recurrence Relation

- Step #1: Plug & Chug
 - algebraic manipulations to guess a Big-Oh expression
- Step #2: Induction
 - prove that Big-Oh expression is correct
Example: recursive \texttt{array}_\texttt{max}

\[
T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0
\]

\underline{general case}\hspace{5cm} \underline{base case}

Activity #2
Example: recursive `array_max`

\[T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0 \]

- **general case**
- **base case**

Activity #2

3 min
Example: recursive \texttt{array_max}

\[T(n) = T(n - 1) + c_1, \quad \text{with } T(1) = c_0 \]

general case \hspace{2cm} base case

Activity #2

2 min
Example: recursive \texttt{array_max}

\[T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0 \]

- general case
- base case

Activity #2

1 min
Example: recursive \texttt{array_max}

\[T(n) = T(n - 1) + c_1, \quad \text{with} \quad T(1) = c_0 \]

general case

base case

Activity #2
Plug & Chug

\[T(1) = c_0 \]
\[T(2) = c_1 + T(1) = c_1 + c_0 \]
\[T(3) = c_1 + T(2) = c_1 + c_1 + c_0 = 2c_1 + c_0 \]
\[T(4) = c_1 + T(3) = c_1 + 2c_1 + c_0 = 3c_1 + c_0 \]
\[T(5) = c_1 + T(4) = c_1 + 3c_1 + c_0 = 4c_1 + c_0 \]
\[\vdots \]
\[T(n) = c_1 + T(n - 1) = (n - 1)c_1 + c_0 \]

- Recurrence solution: closed form expression

\[T(n) = (n - 1) \cdot c_1 + c_0 = O(n) \]
Are we done?

- That was just a guess... not a proof!
 - plugged & chugged to find a pattern
 - and then guessed
- How can we be sure?
- We prove it using Induction
Induction

- Proof technique to prove statements about well-ordered sets
 - well-ordered: order between elements
 - example: the integers, recurrence relations

- Idea
 - prove if statement true for some case, statement true for next case
 - prove statement for base case

- Example for integers
 - prove statement for \(n = 1 \)
 - prove that if statement is true for \(n = k \) then true for \(n = k+1 \)
Induction

Inductive step:

Base case:
Induction for `array_max`

- The solution of $T(n) = T(n - 1) + c_1$, $T(1) = c_0$ is

$$T(n) = (n - 1) \cdot c_1 + c_0 = O(n)$$

- **Base case:** $n=1$
 - $T(1) = (1 - 1) + c_0 = c_0$

- **Inductive assump:** $n=k$
 - $T(k) = (k - 1) \cdot c_1 + c_0$

- **Inductive step**
 - $T(k + 1) = c_1 + T(k)$
 - $= c_1 + (k - 1) \cdot c_1 + c_0$
 - $= k \cdot c_1 + c_0$

- **Rec. rel.**

- **Simplify**
Induction Example #2

\[A(n) = 2 + 4 + \cdots + 2n = n \cdot (n + 1) \]

- **Base case:** \(n = 1 \)
 - \(2 \cdot 1 \) and \(1 \cdot (1 + 1) = 1 \cdot 2 = 2 \)

- **Inductive assumption:** \(n=k \)
 - \(A(k) = 2 + 4 + \cdots + 2k = k \cdot (k + 1) \)

- **Inductive step** \(A(k+1) = 2 + 4 + \cdots + 2k + 2 \cdot (k + 1) \)
 - \(= k \cdot (k + 1) + 2 \cdot (k + 1) \)
 - factor out \((k + 1) \)
 - \(= (k + 1) \cdot (k + 2) \)
Induction Example #3

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

Activity #3
Induction Example #3

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

Activity #3

4 min
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

Activity #3

3 min
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

Activity #3

\[\text{2 min} \]
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

Activity #3

0 min
Another Induction Example

\[P(n) = \sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \]

- Prove base case: \(n=1 \)
 \[\sum_{i=1}^{1} i = 1 \text{ and } \frac{1 \cdot (1 + 1)}{2} = 1 \]
- Induction assumption: \(n=k \)
 \[\sum_{i=1}^{k} i = \frac{k \cdot (k + 1)}{2} \]
- Prove induction step!
Another Induction Example

- Prove induction step

\[
\sum_{i=1}^{k+1} i = 1 + 2 + \cdots + k + (k + 1)
\]

\[
= \sum_{i=1}^{k} i + (k + 1)
\]

\[
= \frac{k \cdot (k + 1)}{2} + (k + 1)
\]

\[
= \frac{k \cdot (k + 1)}{2} + 2 \cdot \frac{(k + 1)}{2}
\]

\[
= \frac{(k + 1) \cdot (k + 2)}{2}
\]

Induction assumption

\[
\sum_{i=1}^{k} i = \frac{k \cdot (k + 1)}{2}
\]

Factor out \((k + 1)\)
Strong vs. Weak Induction

- Weak induction
 - induction step assumes true for $n=k$ and
 - proves true for $n=k+1$

- Strong induction
 - induction step assumes true for $n=1, 2, ..., k$ and
 - proves true for $n=k+1$

- Strong vs. weak refers to assumption
 - not strength of proof
Strong vs. Weak Induction

Weak:

Strong:
Readings

- Induction handout on course page
Announcements

‣ Sections have started!

‣ Clinic is starting this week! Wednesdays 8-10pm in Motorola (CIT 165)

‣ Let us know if:
 ‣ You don’t receive graded Homework 1 via email by Thursday

‣ **Homework 2** due **Friday 3:00pm**

‣ **Seamcarve** due **Monday 11:59pm**

‣ Thursday is **Python Lab #2**
 ‣ Same room you went to last week