Testing Guidelines for CS16

This document defines some fundamental rules to help you write good tests for your code in
cs16 and beyond! While the suggestions covered her are by no means exhaustive, they’ll help
you start thinking about how to test your code well, and therefore ensure that your code works

as expected.

e Try to cover every line of code (coverage)

O

As a simple example, if you have “if and else” statements, write your tests so that
each case is tested
In the following example function, it would be good to test both positive and
negative numbers
def isGreaterThanZero(num):
if num > O:
return True
else:
return False
In other words, try to cover every input/output case. So you could test the
following:
m self.assertFalse(isGreaterThanZero(0)) —

m self.assertTrue(isGreaterThanZero(5)) —
m self.assertFalse(isGreaterThanZero(-5)) —

e Tryto test edge cases

o

O

o

For instance, if you have code that sums up all the numbers in a list, make sure
to test the empty array
m self.assertEqual(sumList([]), 0)
You might also want to see that certain errors are raised (on bad inputs)
m Forinstance, if a function should take in an integer, but someone passed
it a string, you should make sure the the correct errors are raised
Other edge cases include: testing code behavior with empty string, empty array

e Think about different kinds of inputs

o

o

O

For instance, if you were trying to perform an function on a list, would it work with
duplicate elements?

What about odd or even length inputs?

Or positive or negative inputs?

e Sometimes randomization helps

O

For instance, if you wanted to make sure a function always return the max value
in the list, you can create a random list and make sure the function returns the
correct value by checking the value returned by our function with python’s “max()”
method. (Assume the function we wrote was ourMaxValue())

m =[]
for int in range(0,100) //created a list of 100 numbers
l.append(random.randint(-1000, 1000)) /append a random integer
from -1000 to 100
maxNum = max(l) //use python’s max
self.assertEqual(ourMaxValue(l), maxNum)

