Optional Problems 4
No Due Date

Handin
Optional problems will not count towards your grade in any way and are provided as an opportunity for you to get more practice.

1 Written Problems

Problem 4.1
Using Multiple Data Structures
Write pseudocode to remove duplicates from an unsorted linked list in $O(n)$ time.

Problem 4.2
Binary Search in a Matrix
So far you have been taught how to binary search through a one dimensional list of sorted numbers. In this problem you will binary search through a two dimensional matrix of numbers which are sorted in a particular form.

Problem
Let the matrix be of size $n \times n$ where

1. Each row is in non-decreasing (non-strictly increasing) order.
2. Each column is in non-decreasing (non-strictly increasing) order.

Determine, in $O(n)$ time, whether a particular element is in the matrix. Then write a brief explanation of why your solution is $O(n)$.

Example
Here is an example of a matrix that satisfies the above conditions.

\[
\begin{array}{cccccc}
1 & 3 & 4 & 7 & 8 \\
4 & 5 & 6 & 8 & 8 \\
7 & 8 & 9 & 12 & 15 \\
8 & 10 & 11 & 15 & 16 \\
10 & 11 & 13 & 16 & 20 \\
\end{array}
\]

How you would search for 1 in the matrix above. What about 6? 19? 21?
Hints

It is a difficult jump to get to the answer for this problem so feel free to use the hints below, just make sure to think through the problem and come up with a couple ideas on your own first. They go in order of increasing helpfulness so go through them one at a time.

1. Ordinary binary search revolves around a pivot which is chosen as the \(\frac{\text{length}}{2} \) element in the list. We can test whether the element we’re searching for is smaller or larger than the pivot and eliminate part of the list. Which position in the matrix should be chosen as a pivot?

2. If you haven’t determined the position of the pivot think about the layout of the matrix. In our matrix binary search, the smallest element is in the upper left corner. Which position is the largest element in? Which position is near the middle (maybe not exactly the median) element in?

3. In ordinary binary search we test whether the element we’re searching for is smaller or larger than the pivot. From this comparison we can eliminate half of the list. Using the pivot you determined above can you eliminate any elements in the matrix?

4. Since each row is increasing we know that the first element is the smallest and the last element is the largest. If the number we are searching for is smaller than the smallest element in the row, what can we say about the row? What if it is higher than the highest number in the row?

5. The above statement is also true for columns. How can you combine this information to form a solution?