The real test will consist of problems similar to some of the problems listed below and draw from the following topics. A really good way to study is to do all the problems below independently and then compare your solutions with a friend. If you actually solve the problems with friends, be sure you understand the solutions, and how to get to the solutions yourself. Memorizing the solutions to these problems will be of almost no value on the actual test. Make sure none of the following topics are foreign to you.

Note: This practice exam is slightly longer than the actual exam would be so you should not worry if it takes you longer to attempt.

Topics to Study

Anything covered in lecture, projects, or homeworks before starting the graphs unit is fair game! Here is a list of topics you should be familiar with!

- Dynamic Programming
- Analysis and Big-O, Big-Omega, Big-Theta
- Amortized Analysis, Expected Analysis
- Expanding Data Structures (Stacks, Queues)
- Hashing, Sets, and Dictionaries
- Arrays, Binary Search
- Trees and Traversals
- Binary Search Trees
- Priority Queues, Heaps
- Sorting, Master Theorem
- Selection, Medians

1 Recurrence and Induction

The following code messes with the entries of an array, and then recursively calls itself on a smaller array. You can assume that the input array size \(n \) is a power of two.

```python
def transform(arr):
    """transform: int array -> int array
    Purpose: takes an array of \( n \) ints, where \( n \) is a power of 2, and returns an array of \( n \) ints
    ""
    if len(arr) == 1:
        return arr
    else:
        # Transform code...
```

```bash
1
```
return arr

half = len(arr)/2
sums = [0] * half # build arrays of n/2 zeroes
diffs = [0] * half
for i in range(0, half):
a = arr[2 * i]
b = arr[2 * i + 1]
sums[i] = a + b
diffs[i] = a - b
return transform(diffs) + sums # Note: list1 + list2 concatenates
the lists: [1]+[2,3] => [1,2,3]

(a) Let $T(n)$ be the running time of transform on any array of size n. Write a recurrence relation for T. Be sure to include a base case.

(b) Use plug-n-chug with $n = 1, 2, 4,$ and 8 to conjecture a big-O solution to the recurrence.

(c) Here’s a recurrence relation for a different function, S:
 - $S(1) = 1$
 - $S(n) = n^2 + S(\frac{n}{2})$

 The solution to this recurrence (for n a power of 2) is:
 $$ S(n) = \frac{4n^2 - 1}{3} $$

 Prove this by induction; you need only handle the case where n is a power of two, i.e., where $n = 2^k$ for some non-negative integer k.

(d) Is the function S $O(1)$? Is it $O(n^3)$? Is it $\Omega(n^2/2)$? Is it $\Theta(n)$? Explain each case.

2 Tree Traversal

A binary tree of height h can have at most $2^{h+1} - 1$ nodes, as we showed in class. We define the fullness of a tree as the number of nodes in the tree divided by the maximum possible number of nodes for a tree of that height. Thus the tree below has a fullness of $4/7$ (the height is 2, and there are 4 nodes, so the fullness is $4/(2^3 - 1) = 4/7$).

Design an efficient linear-time algorithm to compute, for any binary tree, the minimum fullness of any subtree of the tree (including the tree itself). In the example, there are four subtrees: the left leaf (fullness = 1), the right leaf (fullness = 1), the left subtree of the root (fullness 2/3) and the root (fullness = 4/7). The algorithm will return 4/7 because 4/7 < 2/3.
3 Tree Induction

(a) A (0,2) binary tree T is one in which every node has out-degree zero or two, i.e., it has either two children or it’s a leaf. Give a recursive definition of a (0,2) binary tree. Take a look at HW5 for an example of a recursive definition of a tree.

(b) Prove by induction that the number of nodes in a regular binary tree is one more than the number of edges.

4 Pseudocode

Suppose you have a stack and you want to know whether it’s “almost empty”. Write pseudocode for a method that returns “true” if the stack is either empty or has just one item in it. The Stack class you’re enhancing does not keep track of its current size, n, but has an isEmpty() function. Your method should be $O(1)$, i.e., constant time.

5 Amortized Analysis

As you saw in Homework 1, you can implement a queue with very little additional work by using two stacks, in and out. They both start out empty. To enqueue an item, you push it onto in. To dequeue an item, you pop it from out. Of course, that depends on out containing something! If out is empty, you first “pour” all the items from in into out, and then pop from out. This is what “pouring” looks like:

```python
def pour():
    while not in.isEmpty():
        out.push(in.pop())
```

(a) Draw a picture to indicate the state of the stacks in and out in an empty queue to which the following operations are applied: enq(A), enq(B), deq(), enq(C), deq(), deq(). You should draw a total of seven pictures, the first and last showing two empty stacks.

(b) Explain why enqueuing is worst-case $O(1)$ and dequeuing is worst-case $O(n)$, where n is the number of items in the queue.

(c) Explain why the amortized cost of dequeuing, in any sequence of n operations on an empty queue, is $O(1)$.

6 Master Theorem

What is the big-O running time of a recursive algorithm that splits a problem of size n into 3 subproblems each of size $2n/3$, recursively solves the three subproblems, and then combines the solutions in time $O(n^2)$? Note: There’s no need to memorize the master theorem. It will be stated on the exam.

7 Hashing

What is a good hash function? What’s a bad one? What are hashtables and how do they work?
8 Sorting

You are given two arrays of integers, A and B, both sorted in increasing order. A has enough empty space at the end to include all the elements of B within it. Write pseudocode for a method to merge B into A such that all the elements in the merged array A are sorted in increasing order as well.

Example: A = [1,3,5,7...] and B = [2,4,6] then your method should return the array [1,2,3,4,5,6,7]. Try hand simulating with your own examples.

9 Search

You’re given a function \(f \) that takes positive integers and returns integers in constant time. It has a special form, however: for the first “few” positive integers, the returned values are all positive, and in non-decreasing order (not necessarily increasing). But after some integer \(n \), the function always returns \(-1\). For instance, the code might look like this:

```python
def f(u):
    if (u < 4):
        return u*u + u + 3
    else
        return -1
```

In this case, \(n \) is 3: for every \(u > 3 \), we have \(f(u) = -1 \), and for \(1 \leq u \leq 3 \), \(f(u) \) is positive and non-decreasing (in fact, it’s increasing).

Given a positive integer \(p \) and the function \(f \), you must determine whether there is a positive integer \(b \) with \(f(b) = p \). You may call the function \(f \) as often as you need to.

Write pseudocode for an algorithm that solves the problem in \(O(\log n) \) time. Remember that you are given the ability to invoke the function \(f \), but you have no idea, a priori, what the value of \(n \) might be. Note also that \(f \) is defined for all positive integers, so the domain of \(f \) is infinite.