Homework 8
Due Friday, April 10 by 5:00pm

“If you dream and allow yourself to dream, you can do anything.” — Clara Hughes, gold-medal cyclist and speed skater

Handing In
To hand in a homework, go to the directory where your work is saved and run
`cs0160_handin hwX` where X is the number of the homework. Make sure that
your written work is saved as a .pdf file, and any Python problems are completed
in the same directory or a subdirectory. You can re-handin any work by running
the handin script again. We’ll only grade your most recent submission. To install
stencil Python files for a homework, run `cs0160_install hwX`. You will lose
points if you do not hand in your written work as a .pdf file.

1 Written Problems

Problem 8.1

Treaps
A treap is a data structure whose nodes hold two values: a key and a priority.
Using these two values, the insertion algorithm places the node in the correct
spot in the treap, using both binary search tree order and heap order (hence
the name).

Binary search order: This is done with respect to keys. For any node \(n \), all
nodes in \(n \)'s left subtree will have keys smaller than \(n \)'s key, and all nodes in
\(n \)'s right subtree will have keys greater than \(n \)'s key.

Heap order: This is done with respect to priorities. For any node \(n \), \(n \)'s prior-
ity will be less than its children’s priorities and greater than its parent’s priority.

Here is an example, where the priority is on top and the key is on the bottom:
You may assume that all the keys are distinct and all the priorities are distinct.

Fun fact: Treaps can be used with random priorities as probabilistically self-balancing binary search trees. (See Wikipedia if you’re interested in reading more: [link](#))

1. Give a recursive definition of a treap, as in:
 A binary tree T with a key and a priority at each node is a treap if

 (a) T is empty, or

 (b) T is non-empty and contains a root with left and right subtrees where...

 (recursive part here)

2. Write pseudocode for the recursive function buildTreap which, given any list $(k_1, p_1), \ldots, (k_n, p_n)$ of key-priority pairs (where all keys are distinct and all priorities are distinct) builds a Treap.

The pairs are EntryPair objects, which have getKey() and getPriority() methods. You may also assume that there exists a TreapNode object, which stores a key, a priority, and references to its left and right children. Additionally, assume you have a helper function findRootPair(List<EntryPair> pairs) which takes in any list of key-priority pairs and returns the EntryPair with the minimum priority (hint: the root), where the input list is assumed to be non-empty. Your buildTreap method should return the root of the treap, in the form of a TreapNode.

Your function must be implemented recursively. Hint: your approach will likely involve recurring on smaller and smaller subsets of the key-priority pairs. How will you divide the pairs?

This is what the signature of buildTreap would look like if it were a Java method:

```java
public TreapNode buildTreap(List<EntryPair> pairs)
```

Note: You don’t need to write an insert method to add new pairs to an already-existing treap. Your pseudocode only needs to be able to build a new treap given all the pairs that will be stored inside it.
Problem 8.2

Fast Graduation

Suppose Katie’s curriculum consists of \(n \) courses, all mandatory, all of them lasting one semester, and all of them offered every semester (i.e. the limit does not exist). The prerequisite structure of the curriculum can be organized in a graph, where each node is a course, and there’s a directed edge from node \(A \) to node \(B \) if and only if \(A \) is a prerequisite for \(B \). (Note that if \(A \) is a prereq for \(B \) and \(B \) for \(C \), then that implicitly makes \(A \) a prereq for \(C \). The arrow from \(A \) to \(C \) may or may not be included in the graph.) A course may have any number of prerequisites.

Write pseudocode for an algorithm that computes the minimum number of semesters needed for Katie to complete the curriculum. (She may take any number of courses in each semester). The run time of your algorithm should be \(O(|V| + |E|) \).

2 Python Problems

Problem 8.3

Multiple shortest paths

Let \(G = (V, E) \) be an undirected graph with unit edge lengths (i.e., the length of each edge is 1). Note that there might be multiple shortest paths between a pair of nodes in \(G \). Write python code for a linear-time algorithm that finds the number of distinct shortest paths between nodes \(u \) and \(v \). Hint: \(O(VE) \) is not linear, but \(O(V + E) \) is. You may assume that there are no parallel edges or self loops in \(G \), and you may assume that there is at least one path between \(u \) and \(v \), if \(u \) and \(v \) are both in the graph (which is not guaranteed). You may also assume that \(u \) and \(v \) are distinct nodes. Keep in mind that your code need only return the number of distinct shortest paths, not the paths themselves. However, in order to find the shortest path(s) you will need to calculate the distance (in this case equal to number of edges) between the given pair of nodes in \(G \).

For this assignment, the only data structure you are allowed to use is python’s list. If you plan to use the list as a queue, you’ll need to figure out how to pop off only its first element. You are allowed to manipulate and decorate the graph.
A stencil for this code, named numShortestPaths, has been provided for you. When testing, DO NOT write your tests within the example test functions we provide! Our scripts will skip the test functions we provide, so write your own functions to test your code thoroughly.
Problem 8.4
Merge, Quick, and Radix Sort

Implement in Python the following sorting algorithms: merge sort, quick sort, and radix sort.

Requirements

Your job is to implement the sorts listed above by filling in the methods defined in the stencil code (in `sort.py`) so that, given an array of integers, each will return an array of the same integers sorted in descending order. If you sort in ascending order or sort in ascending order and then reverse the list, you will receive a 0. Also please note that you may not change the signature of any stencil method (doing so will result in no credit). You may also, of course, not call Python’s built-in `sort` procedure.

Merge sort must run in worst case $O(n \log n)$ time.

Quick sort must run in expected case $O(n \log n)$ time.

Radix sort must run in worst case $O(dn)$ time where d is the number of digits in the largest number. Note that while we only discussed radix sort for positive integers in class, your solution must work for all integers! There are several elegant ways to accomplish this.

Radix Challenge! Try to make your radix sort as fast as possible!

Note: Make sure you throw `InvalidInputExceptions` if the input list is `None`. Empty lists are fine, though. You may consider them an already-sorted list.

How To Test Your Code

To test your code, add more assert statements to `sort_test.py`. **DO NOT** write your tests within the example test functions we provide! Our scripts will skip the test functions we provide, so write your own functions to test your code thoroughly. Be sure to test all significant cases, as well as testing that your algorithms handle invalid inputs properly.

Sort Profiling

Now that you have your sorting algorithms, why not time them to observe their relative performances? We have provided among the install files two lists of 10,000 numbers (one per line). `numlist1.txt` has a truly random assortment of integers and `numlist2.txt` is partially sorted. We have also provided a profiler `sort_profiler.py`. This profiler runs all your sorts on each file and outputs the time it takes to run each.
Run the sort profiler and write a brief readme (in `profiler_readme.txt`) to discuss the differences between your relative sorting times, including the differences in timing for the two text files.