Homework 8
EXTRA CREDIT 1
Due Friday April 17, 5 PM EST

Extra credit is worth one extra percent of your overall class grade. TAs will not answer Piazza questions or hours queries on any extra credit topics.

To submit your solutions, please make a directory ~/course/cs0160/extraCredit1 containing your solution PDF and then run the script cs0160_handin extraCredit1.

1 Written Problems

Problem 8.1

More Treaps

Prove (by strong induction) for that any given collection \((k_1, p_1), \ldots, (k_n, p_n)\) of key-priority pairs, where all keys are distinct and all priorities are distinct, there is a unique treap \(T\) with \(n\) nodes, where each node contains a different key-priority pair. “Unique” means that there is only one way to arrange the treap for a given set of inputs.

Note: Strong induction works the same way as regular induction, except instead of assuming \(P(k)\) and showing \(P(k + 1)\), you assume \(P(i)\) for all \(i \leq k\), and show that \(P(k + 1)\) follows from that.

Note further: for a reminder on Treaps, please reference Homework 8.

Solution:

Base Case: \(n = 0\). There is only one way a treap with no nodes can be constructed... it just won’t have any nodes!

Inductive Assumption: Assume that there is only one way to construct a treap of size \(i\) for all \(0 \leq i \leq k\).

Want to Show: There is only one way to construct a treap of size \(k + 1\).

Inductive Step: Given a treap of size \(k + 1\), there must be one unique element with the lowest priority value. To satisfy the heap condition, this node must be the root of \(T\).

To satisfy the BST property, \(T_{\text{left}}\) must contain the remaining items whose keys are smaller than the root’s and \(T_{\text{right}}\) must contain those whose keys are larger.
Both T_{left} and T_{right} must have between 0 and k elements each. By our inductive assumption, those subtrees are unique.

Since there is a unique root and a unique right and left subtree of the root, the treap of size $k + 1$ must be unique.

Conclusion: We’ve proven that a treap of size 0 is unique. We’ve also proven that if all treaps of size $0 \leq i \leq k$ are unique, then all treaps of size $k + 1$ must be unique. Therefore, we have proven that all treaps of size ≥ 0 are unique.

Problem 8.2
Sorting Nodes by Depth

Given a binary search tree, design an algorithm which creates a linked list of all the nodes at each depth. For example, if you have a tree with depth D, you’ll have D linked lists. Your function should take in the root of the BST (which has pointers to any child nodes it may have), and return a list of linked lists.

Solution:

```java
public List<LinkedList<TreeNode>> makeDepthLinkedLists(TreeNode root):
    /** makeDepthLinkedLists: TreeNode -> list
     * Purpose: return a list of D linked lists of nodes at each depth
     */
    depthListList = List<LinkedList<TreeNode>>;
    if root==null:
        return depthListList;
    prevList = LinkedList<TreeNode>();
    prevList.push(root);
    currList = LinkedList<TreeNode>();
    while prevList is not empty:
        currList = fillList(prevList, currList);
        depthListList.push(dList);
        prevList = currList;
        currList = LinkedList<TreeNode>();
    return depthListList;

public LinkedList<TreeNode> fillList(LinkedList prevList, LinkedList currList):
    /** fillList: LinkedLists prevList and currList -> LinkedList
     */
```
Purpose: return the LinkedList of nodes from the current depth level

for node in prevList:
 if curr has left child:
 currList.push(curr.left)
 if curr has right child:
 currList.push(curr.right)

return currList