CONVEX HULL

CS16: Introduction to Data Structures & Algorithms
Outline

1. Overview
2. Convex Hull Overview
3. Graham Scan Algorithm
4. Incremental Algorithm
Convex Hull

- The convex hull of a set of points is the smallest convex polygon containing the points.
- A convex polygon is a nonintersecting polygon whose internal angles are all convex (i.e., less than 180 degrees).
- In a convex polygon, a segment joining any two lies entirely inside the polygon.

![Convex and Nonconvex Polygons]

- **Convex**: All internal angles are less than 180 degrees, and no segment outside the polygon.
- **Nonconvex**: Exists at least one internal angle greater than 180 degrees, or a segment lies outside the polygon.
Convex Hull (2)

- Think of a rubber band snapping around the points
- Remember to think of special cases
 - Colinearity: A point that lies on a segment of the convex is not included in the convex hull
Applications

- Motion planning
 - Find an optimal route that avoids obstacles for a robot
- Bounding Box
 - Obtain a closer bounding box in computer graphics
- Pattern Matching
 - Compare two objects using their convex hulls
Finding a Convex Hull

- One algorithm for determining a convex polygon is one which, when following the points in counterclockwise order, always produces left-turns.
Calculating Orientation

- The orientation of three points \((a, b, c)\) in the plane is clockwise, counterclockwise, or collinear
 - Clockwise (CW): right turn
 - Counterclockwise (CCW): left turn
 - Collinear (COLL): no turn

- The orientation of three points is characterized by the sign of the determinant \(\Delta(a, b, c)\)

\[
\Delta(a, b, c) = \begin{vmatrix} x_a & y_a & 1 \\ x_b & y_b & 1 \\ x_c & y_c & 1 \end{vmatrix}
\]

```python
function isLeftTurn(a, b, c):
    return (b.x - a.x)*(c.y - a.y) - (b.y - a.y)*(c.x - a.x) > 0
```
Calculating Orientation (2)

Using the isLeftTurn() method:

\[(0.5-0) \times (0.5 - 0) - (1-0) \times (1-0) = -0.75 \text{ (CW)}\]

\[(1-0) \times (1-0) - (0.5-0) \times (0.5-0) = 0.75 \text{ (CCW)}\]

\[(1-0) \times (2-0) - (1-0) \times (2-0) = 0 \text{ (COLL)}\]
Calculating Orientation (3)

- Let a, b, c be three consecutive vertices of a polygon, in counterclockwise order
 - b' is not included in the hull if a', b', c' is non-convex, i.e. $\text{orientation}(a', b', c') = \text{CW or COLL}$
 - b is included in the hull if a, b, c is convex, i.e. $\text{orientation}(a, b, c) = \text{CCW}$, and all other non-hull points have been removed
Graham Scan Algorithm

- Find the anchor point (the point with the smallest y value)
- Sort points in CCW order around the anchor
 - You can sort points by comparing the angle between the anchor and the point you’re looking at (the smaller the angle, the closer the point)
Graham Scan Algorithm

- The polygon is traversed in sorted order and a sequence H of vertices in the hull is maintained
- For each point a, add a to H
 - While the last turn is a right turn, remove the second to last point from H
- In the image below, p, q, r forms a right turn, and thus q is removed from H. Similarly, o, p, r forms a right turn, and thus p is removed from H.

![Diagram of Graham Scan Algorithm](image_url)
Graham Scan: Pseudocode

function graham_scan(pts):
 // Input: Set of points pts
 // Output: Hull of points
 find anchor point
 sort other points in CCW order around anchor
 hull = []
 for p in pts:
 add p to hull
 while last turn is a “right turn”
 remove 2nd to last point
 add anchor to hull
 return hull

Note: this is very high-level pseudocode. There are many special cases to consider!
Graham Scan: Run Time

function graham_scan(pts):
 // Input: Set of points pts
 // Output: Hull of points
 find anchor point // O(n)
 sort other points in CCW order around anchor // O(nlogn)
 create hull (empty list representing ordered points)
 for p in pts: // O(n)
 add p to hull
 while last turn is a “right turn” // O(1) amortized
 remove 2nd to last point
 add anchor to hull
 return hull

Overall run time: O(n\text{log}n)
Incremental Algorithm

- What if we already have a convex hull, and we just want to add one point q?
 - This is what you’ll be doing on the Java project after heap!

- Get the angle from the anchor to q and find points p and r, the hull points on either side of q
- If p, q, r forms a left turn, add q to the hull
- Check if adding q creates a concave shape
 - If you have right turns on either side of q, remove vertices until the shape becomes convex
 - This is done in the same way as the static Graham Scan
Incremental Algorithm

Original Hull:

Want to add point q:

Find p and r:

p, q, r forms a left turn, so add q:

o, p, q forms a right turn, so remove p:

n, o, q forms a right turn, so remove o:

Incremental Algorithm

Since m, n, q is a left turn, we’re done with that side.

Now we look at the other side:

Since q, r, s is a left turn, we’re done!

• Remember that you can have right turns on either or both sides, so make sure to check in both directions and remove concave points!
Incremental Analysis

- Let n be the current size of the convex hull, stored in a binary search tree for efficiency
 - How are they sorted? Around the anchor
- To check if a point q should be in the hull, we insert it into the tree and get its neighbors (p and r on the prior slides) in $O(\log n)$ time
- We then traverse the ring, possibly deleting d points from the convex hull in $O((1 + d) \log n)$ time
- Therefore, incremental insertion is $O(d \log n)$ where d is the number of points removed by the insertion