Digraphs
Outline and Reading

- Digraphs (§13.4)
- Traversals of digraphs (§13.4.1)
- Transitive closure (§13.4.2)
- Floyd-Warshall’s algorithm (§13.4.2)
- Directed acyclic graphs (§13.4.3)
- Topological ordering (§13.4.3)
Digraphs

A digraph is a directed graph whose edges are all directed

Applications

- one-way streets
- flights
- task scheduling
Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction.
- In the directed DFS algorithm, we have four types of edges:
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at a vertex s determines the vertices reachable from s.
Transitive Closure

Given a digraph G, the transitive closure of G is the digraph G^* such that:

- G^* has the same vertices as G
- if G has a directed path from u to v ($u \neq v$), G^* has a directed edge from u to v

The transitive closure provides reachability information about a digraph.

We can compute the transitive closure in time $O(n(n + m))$ by repeated applications of directed DFS.
Floyd-Warshall’s Algorithm

- Floyd-Warshall’s algorithm numbers the vertices of a digraph G as v_1, \ldots, v_n and computes a series of digraphs G_0, \ldots, G_n
 - $G_0 = G$
 - G_k has a directed edge (v_i, v_j) if G has a directed path from v_i to v_j with intermediate vertices in the set $\{v_1, \ldots, v_k\}$

We have that $G_n = G^*$

- In phase k, digraph G_k is computed from G_{k-1}

Algorithm $FloydWarshall(G)$

Input digraph G
Output transitive closure G^* of G

$i \leftarrow 1$

for all $v \in G.\text{vertices}()$
 - denote v as v_i
 - $i \leftarrow i + 1$
 - $G_0 \leftarrow G$
for $k \leftarrow 1$ to n do
 $G_k \leftarrow G_{k-1}$
 for $i \leftarrow 1$ to n ($i \neq k$) do
 for $j \leftarrow 1$ to n ($j \neq i, k$) do
 if $G_{k-1}.\text{areDirAdjacent}(v_p, v_k) \land G_{k-1}.\text{areDirAdjacent}(v_k, v_j)$
 if $\neg G_k.\text{areDirAdjacent}(v_p, v_j)$
 $G_k.\text{insertDirectedEdge}(v_p, v_j, k)$
return G_n
Example

$G = G_0 = G_1 = G_2$

G_3

$G_4 = G_5 = G^*$
A directed acyclic graph (DAG) is a digraph that has no directed cycles.

A topological ordering of a digraph is a numbering

\[v_1, \ldots, v_n \]

of the vertices such that for every edge \((v_i, v_j)\), we have \(i < j\).

Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints.

Theorem

A digraph admits a topological ordering if and only if it is a DAG.
Topological Ordering

- A stack stores the vertices whose predecessors have all been numbered
- We store two labels with each vertex:
 - Counter of predecessors not yet numbered
 - Rank in the topological ordering
- The algorithm runs in time $O(n + m)$

Algorithm \textit{TopologicalOrdering}(G)

\begin{algorithm}
 \begin{itemize}
 \item $S \leftarrow \text{new stack}$
 \item \textbf{for all} $v \in G.\text{vertices}()$
 \begin{itemize}
 \item $\text{setCount}(v, \text{inDegree}(v))$
 \item \textbf{if} $\text{getCount}(v) = 0$
 \begin{itemize}
 \item $S.\text{push}(v)$
 \end{itemize}
 \end{itemize}
 \item $i \leftarrow 1$
 \item \textbf{while} $\neg S.\text{isEmpty}()$
 \begin{itemize}
 \item $u \leftarrow S.\text{pop}()$
 \item $\text{setRank}(u, i)$
 \item $i \leftarrow i + 1$
 \item \textbf{for all} $e \in G.\text{outgoingEdges}(u)$
 \begin{itemize}
 \item $z \leftarrow G.\text{opposite}(u, e)$
 \item $\text{setCount}(z, \text{getCount}(z) - 1)$
 \item \textbf{if} $\text{getCount}(z) = 0$
 \begin{itemize}
 \item $S.\text{push}(z)$
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \end{itemize}
\end{algorithm}
Example
Example