Big-O and Sorting

Outline

- How do we analyze an algorithm?
- Definition of Big-O notation
- Overview and Analysis of Sorting algorithms

Importance of Algorithm Analysis 1/2

- “Performance” of an algorithm refers to how quickly it executes and how much memory it requires
 - performance matters when the data grows in size!
 - can observe and analyze the performance, then revise the algorithm to improve its performance

- Algorithm analysis is so important that all Brown CS students are required to take at least one course covering it

Importance of Algorithm Analysis 2/2

- Factors that affect performance
 - computing resources
 - implementation (like machine, language)
 - size of data, denoted N
 - number of elements to be sorted
 - number of elements in ArrayList to iterate through
 - much faster to search through list of CS15 students than list of Brown students

- This lecture: a brief introduction to Algorithm Analysis!
- Goal: to maximize efficiency and conserve resources
Runtime

- **Runtime** of an algorithm varies with the input and typically grows with input size.
- In most of computer science we focus on the **worst case runtime**.
 - Easier to analyze and important for unforeseen inputs.
- **Average case** is what will happen most often. **Best case** requires the least amount of work and is the best situation you could have.
 - Average case is also important, best case is interesting but not insightful.
- How to determine runtime?
 - Inspect pseudocode and determine the number of statements executed by the algorithm as a function of input size.
 - Allows us to evaluate approximate speed of an algorithm independent of the hardware or software environment.
 - Memory use may be even more important for smaller devices.

Elementary Operations

- Algorithmic "time" is measured in **elementary operations**.
 - Math (+, -, *, /, max, min, log, sin, cos, abs, ...)
 - Comparisons (==, >, <=, ...)
 - Function (method) calls and value returns.
 - Array allocation and creation of new objects (careful, object's constructor may have elementary ops too!)
- For purpose of algorithm analysis, assume each of these operations takes same time: "1 operation" — we are only interested in "asymptotic performance" for large data sets where small differences don't matter — see S9.

Example: Constant Runtime

```java
public int addition(int x, int y) {
    return x+y; //add and return 2 ops
}
```

- **Always** 2 operations performed.
- How many operations performed if this function were to add ten integers? Would it still be constant runtime?

1 - Note that this is technically 3 operations, because the computer first saves x in a 'register' then adds y to the value stored in this register, then returns this sum. This is beyond the scope of CS15. Take CS33 to find out more! 2 op, 3 op are both constant runtime!.
Example: Quadratic Runtime

```java
public void printPossibleSums(int[] a) {
    int len = a.length; // 1 op; storing avoids .length in exit check
    for (i=0; i<len; i++) { // 2 op per loop
        for (j=0; j<len; j++) { // 2 op per loop
            System.out.println(a[i] + a[j]); // 4 ops per loop
        }
    }
}
```

- Requires about $8n^2 + 1$ operations (It is okay to approximate!)
- Number of operations executed grows quadratically!
- If one element added to list: element must be added with every other element in list
- Notice that linear runtime algorithm on previous slide had only one `for` loop, while this quadratic one has two nested `for` loops

Big-O Notation – OrderOf()

- But how to abstract from implementation…?
- **Big O notation**
- $O(N)$ means an operation is done on each element once
 - N elements * 1 operation/element = N operations
- $O(N^2)$ means each element is operated on N times
 - N elements * N operations/element = N^2 operations
 - memory use may be even more important for smaller devices
- Only consider "asymptotic behavior" i.e., when $N>>1$
 - N is much greater than 1
 - N is unimportant compared to N^2

Big-O Constants

- **Important**: Only the largest N expression without constants matters.
- We are not concerned about runtime with small numbers of data – we care about running operations on large amounts of inputs
 - $3N^2$ and $500N^2$ are both $O(N^2)$ – unrealistic if N is small, of course
 - N^2 is $O(N)$
 - $4N^2 + 2N$ is $O(N^2)$
- Useful sum that recurs frequently in analysis:
 $$1 + 2 + 3 + \cdots + N = \sum_{k=1}^{N} k = \frac{N(N+1)}{2}, \text{ which is } O(N^2)$$

Social Security Database Example 1/3

- Hundreds of millions of people in US, each have a number associated to them
- If 100,000 people named John Smith, each has an individual SSN
- If government wants to look up information they have on John Smith, they use his SSN
Social Security Database Example 2/3

- Say it takes 10^{-4} seconds to perform a constant set of operations on one SSN
 - running an algorithm on 5 social security numbers may take 5×10^{-4} seconds, and running an algorithm on 50 will only take 5×10^{-3} seconds
 - both are incredibly fast, a difference in runtime might not be noticeable by an interactive user
 - this changes with large amounts of data, i.e., the actual SS Database

Social Security Database Example 3/3

- Say it takes 10^{-4} seconds to perform a constant set of operations on one SSN
 - to perform an algorithm with $O(N)$ on 300 million people, it will take 8.3 hours
 - $O(N^2)$ takes 285,000 years
- With large amounts of data, differences between $O(N)$ and $O(N^2)$ are HUGE!

Graphical Perspective 1/2

- $f(N)$ on linear graph paper

Graphical Perspective 2/2

- $f(N)$ on log-log graph paper
- Base for logs often depends on the data structures we use in our algorithms
Quiz! 1/3

- What is the big-O runtime of this algorithm?

```java
public int sumArray(int[] array){
    int sum = 0;
    for (int i=0; i<array.length; i++){
        sum = sum + array[i];
    }
    return sum;
}
```

- Answer: $O(N)$

Quiz! 2/3

- What is the big-O runtime of this algorithm?

```java
public int sumSquareArray(int dim, int[][] a){
    int sum = 0;
    for (int i=0; i<dim; i++){
        for (int j=0; j<dim; j++){
            sum = sum + a[j][i];
        }
    }
    return sum;
}
```

- Answer: $O(N^2)$

Quiz! 3/3

- What is the big-O runtime of this algorithm?

```java
public javafx.scene.Color getColor(){
    return _currentColor;
}
```

- Answer: $O(1)$

Sorting

- We use runtime analysis to help choose the best algorithm to solve a problem
- Two common problems: sorting and searching through a list of objects
- This lecture we will analyze different sorting algorithms to find out which is fastest
Sorting – Social Security Numbers

- Consider an example where run-time influences approach
- How would you sort every SSN in the Social Security Database in increasing order?
- There are multiple known algorithms for sorting a list
 - these algorithms vary in their runtime

Bubble Sort 1/2

- Iterate through sequence, comparing each element to its right neighbor
- Exchange adjacent elements if necessary; largest element bubbles to the right
- End up with a sorted sub-array on the right. Each time we go through the list, need to switch one fewer item

Bubble Sort 2/2

- Iterate through sequence, comparing each element to its right neighbor
- Exchange adjacent elements if necessary; largest element bubbles to the right
- End up with a sorted sub-array on the right. Each time we go through the list, need to switch one fewer item
- N is the number of objects in sequence

```
i = N;
sorted = false;
while((i > 1) && (!sorted)) {
    sorted = true;
    for(int j=1; j<i; j++){
        if (a[j-1] > a[j]) {
            temp = a[j-1];
            a[j-1] = a[j];
            a[j] = temp;
            sorted = false;
        }
    }
    i--;
}
```

Bubble Sort - Runtime

Worst-case analysis (sorted in inverse order):
- the while-loop is iterated N-1 times
- iteration i has \(2 + 6(i-1)\) operations

\[
\text{Total: } 2 + N + 2(N-1) + 6((N-1)+...+2+1) = 3N + 6(N-1)/2 = 3N^2 + ... = O(N^2)
\]
Insertion Sort 1/2

- Like inserting a new card into a partially sorted hand by bubbling to the left into a sorted subarray; little less brute-force than bubble sort
- Add one element $a[i]$ at a time
- Find proper position, $j+1$, to the left by shifting to the right $a[i-1], a[i-2], ... , a[j+1]$ left neighbors, until $a[j] < a[i]$
- Move $a[i]$ into vacated $a[j+1]$
- After iteration $i<n$, the original $a[0]...a[i]$ are in sorted order, but not necessarily in final position

```c
for (int i = 1; i < n; i++) {
    int toInsert  = a[i];
    int j = i-1;
    while ((j >= 0) && (a[j] > toInsert)) {
        move a[j] forward; j--;
    }
    move toInsert to a[j+1];
}
```

Insertion Sort 2/2

```c
for (int i = 1; i < n; i++) {
    int toInsert  = a[i];
    int j = i-1;
    while ((j >= 0) && (a[j] > toInsert)) {
        move a[j] forward; j--;
    }
    move toInsert to a[j+1];
}
```

Insertion Sort - Runtime

- while-loop inside our for-loop. The while loops call on $N-1$ operations, then $N-2$ operations... The for-loop calls the while loop N times.
- $O(N^2)$ because we have to call on a while loop with around N operations N different times
- Reminder! Constants do NOT matter with Big-O

Selection Sort 1/2

- Find smallest element and put it in $a[0]$
- Find 2nd smallest element and put it in $a[1]$, etc
- Less data movement (no bubbling)
Selection Sort 2/2

What we want to happen:

```java
for (int i = 0; i < n; i++) {
    int min = i;
    for (int j = i + 1; j < n; j++) {
        if (a[j] < a[min]) {
            min = j;
        }
    }
    temp = a[min];
    a[min] = a[i];
    a[i] = temp;
}
```

Comparison of Basic Sorting Algorithms

- Differences in **Best** and **Worst** case performance result from the state (ordering) of the input before sorting
- Selection Sort wins on data movement
- For small data, even the worst sort – Bubble – is fine!

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Selection</th>
<th>Insertion</th>
<th>Bubble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>(\frac{n^2}{2})</td>
<td>(n)</td>
<td>(n)</td>
</tr>
<tr>
<td>Average</td>
<td>(\frac{n^2}{2})</td>
<td>(\frac{n^2}{4})</td>
<td>(\frac{n^2}{2})</td>
</tr>
<tr>
<td>Worst</td>
<td>(n^2)</td>
<td>(\frac{n^2}{4})</td>
<td>(\frac{n^2}{2})</td>
</tr>
</tbody>
</table>

Selection Sort - Runtime

- Most executed instructions are those in inner `for` loop
- Each such instruction is executed \((N-1) + (N-2) + \ldots + 2 + 1 \) times
- Time Complexity: **\(O(N^2) \)**

Merge Sort
Recursive (Top Down) Merge Sort 1/6

- **Partition** sequence into two sub-sequences of N/2 Elements.

- Recursively **partition** and sort each sub-arrays.

- **Merge** the sorted sub-arrays.

Recursive (Top Down) Merge Sort 2/6

- **Partition** sequence into two sub-sequences of N/2 Elements.

- Recursively **partition** and sort each sub-arrays.

- **Merge** the sorted sub-arrays.

Recursive (Top Down) Merge Sort 3/6

```java
public class Sorts {
    // other code here
    public void mergeSort(ItemSequence listSequence, int first, int last) {
        if (first < last) {
            int middle = (first + last) / 2;
            mergeSort(listSequence, first, middle); // recursively mergeSort sub-sequences
            mergeSort(listSequence, middle+1, last);
            merge(listSequence, first, middle, last); // merges the two sub-sequences
        }
    }
}
```

Recursive (Top Down) Merge Sort 4/6

```java
public class Sorts {
    // other code here
    public void mergeSort(ItemSequence listSequence, int first, int last) {
        if (first < last) {
            int middle = (first + last) / 2;
            mergeSort(listSequence, first, middle);
            mergeSort(listSequence, middle+1, last);
            merge(listSequence, first, middle, last);
        }
    }
}
```
public ItemSequence merge(ItemSequence A, ItemSequence B){
 int aIndex = 0;
 int bIndex = 0;
 while (aIndex < A.length && bIndex < B.length){
 if (A[aIndex] <= B[bIndex]){
 add A[aIndex] to result;
 aIndex++;
 }
 else {
 add B[bIndex] to result;
 bIndex++;
 }
 }
 if (aIndex < A.length){
 result = result + A[aIndex...end];
 }
 if (bIndex < B.length){
 result = result + B[bIndex...end];
 }
 return result;
}

- Add the elements from the two sequences in increasing order.
- If there are elements left that you haven't added, add the remaining elements to your result.

Recursive (Top Down) Merge Sort 6/6

- Each part of the tree performs n operations to merge the two subproblems below it.
- Because we divide each sequence by two, the algorithm makes log₂N merges.
- \(O(N \log N) \) which is way better than \(O(N^2) \)
- You will learn much more about how to find the runtime of these types of algorithms in CS16!

Iterative (Bottom Up) Merge Sort

- Merge sort can also be implemented iteratively...non-recursive!
- Begin by looping through the array of size N, sorting 2 items each. Loop through the array again, combining the 2 sorted items into a sorted item of size 4. Repeat... until there is a single item if size N!
- Number of iterations is \(\log_2 N \), rounded up to nearest integer. 1000 elements in the list, only 10 iterations!!

Comparing Algorithms Side by Side

- Bubble Sort \(- O(N^2) \)
- Insertion Sort \(- O(N^2) \)
- Merge Sort \(- (N \log_2 N) \)
That's It!

- Runtime is a very important part of Algorithm analysis!
 - Worst case run-time is what we generally focus on
 - Know the difference between constant, linear, and quadratic run-time
 - Calculate/define run-time in terms of Big-O Notation

- Sorting!
 - Runtime Analysis is very significant for Sorting Algorithms!
 - Types of Sorting Algorithms - Bubble, Insertion, Selection, Merge Sort
 - Different Algorithms have different Performances and Time Complexities.

What's next?

- You have now seen how different approaches to solving problems can dramatically affect speed of algorithms
 - This lecture utilized arrays to solve most problems
- Subsequent lectures will introduce more data structures beyond arrays, that can be used to handle collections of data
- We can use our newfound knowledge of algorithm analysis to strategically choose different data structures to further speed up algorithms!

Announcements

- DoodleJump help session now (4pm) in Barus & Holley 166
- Optional Q&A Review session in CIT 201 on Saturday 1pm-2:30pm (tentative)
- Hours lines have been short – good time to ask conceptual questions
- Cartoon due dates:
 - early: Wed 11/4
 - on-time: Friday 11/6
 - late: Sunday 11/8